MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmptg Structured version   Visualization version   Unicode version

Theorem elrnmptg 5375
Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
elrnmptg  |-  ( A. x  e.  A  B  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    F( x)    V( x)

Proof of Theorem elrnmptg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 rnmpt.1 . . . 4  |-  F  =  ( x  e.  A  |->  B )
21rnmpt 5371 . . 3  |-  ran  F  =  { y  |  E. x  e.  A  y  =  B }
32eleq2i 2693 . 2  |-  ( C  e.  ran  F  <->  C  e.  { y  |  E. x  e.  A  y  =  B } )
4 r19.29 3072 . . . . 5  |-  ( ( A. x  e.  A  B  e.  V  /\  E. x  e.  A  C  =  B )  ->  E. x  e.  A  ( B  e.  V  /\  C  =  B ) )
5 eleq1 2689 . . . . . . . 8  |-  ( C  =  B  ->  ( C  e.  V  <->  B  e.  V ) )
65biimparc 504 . . . . . . 7  |-  ( ( B  e.  V  /\  C  =  B )  ->  C  e.  V )
76elexd 3214 . . . . . 6  |-  ( ( B  e.  V  /\  C  =  B )  ->  C  e.  _V )
87rexlimivw 3029 . . . . 5  |-  ( E. x  e.  A  ( B  e.  V  /\  C  =  B )  ->  C  e.  _V )
94, 8syl 17 . . . 4  |-  ( ( A. x  e.  A  B  e.  V  /\  E. x  e.  A  C  =  B )  ->  C  e.  _V )
109ex 450 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  ( E. x  e.  A  C  =  B  ->  C  e. 
_V ) )
11 eqeq1 2626 . . . . 5  |-  ( y  =  C  ->  (
y  =  B  <->  C  =  B ) )
1211rexbidv 3052 . . . 4  |-  ( y  =  C  ->  ( E. x  e.  A  y  =  B  <->  E. x  e.  A  C  =  B ) )
1312elab3g 3357 . . 3  |-  ( ( E. x  e.  A  C  =  B  ->  C  e.  _V )  -> 
( C  e.  {
y  |  E. x  e.  A  y  =  B }  <->  E. x  e.  A  C  =  B )
)
1410, 13syl 17 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( C  e.  { y  |  E. x  e.  A  y  =  B }  <->  E. x  e.  A  C  =  B ) )
153, 14syl5bb 272 1  |-  ( A. x  e.  A  B  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    |-> cmpt 4729   ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  elrnmpti  5376
  Copyright terms: Public domain W3C validator