| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrnmptg | Structured version Visualization version Unicode version | ||
| Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| rnmpt.1 |
|
| Ref | Expression |
|---|---|
| elrnmptg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmpt.1 |
. . . 4
| |
| 2 | 1 | rnmpt 5371 |
. . 3
|
| 3 | 2 | eleq2i 2693 |
. 2
|
| 4 | r19.29 3072 |
. . . . 5
| |
| 5 | eleq1 2689 |
. . . . . . . 8
| |
| 6 | 5 | biimparc 504 |
. . . . . . 7
|
| 7 | 6 | elexd 3214 |
. . . . . 6
|
| 8 | 7 | rexlimivw 3029 |
. . . . 5
|
| 9 | 4, 8 | syl 17 |
. . . 4
|
| 10 | 9 | ex 450 |
. . 3
|
| 11 | eqeq1 2626 |
. . . . 5
| |
| 12 | 11 | rexbidv 3052 |
. . . 4
|
| 13 | 12 | elab3g 3357 |
. . 3
|
| 14 | 10, 13 | syl 17 |
. 2
|
| 15 | 3, 14 | syl5bb 272 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-mpt 4730 df-cnv 5122 df-dm 5124 df-rn 5125 |
| This theorem is referenced by: elrnmpti 5376 |
| Copyright terms: Public domain | W3C validator |