MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ener Structured version   Visualization version   GIF version

Theorem ener 8002
Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) (Proof shortened by AV, 1-May-2021.)
Assertion
Ref Expression
ener ≈ Er V

Proof of Theorem ener
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relen 7960 . 2 Rel ≈
2 bren 7964 . . 3 (𝑥𝑦 ↔ ∃𝑓 𝑓:𝑥1-1-onto𝑦)
3 vex 3203 . . . . 5 𝑦 ∈ V
4 vex 3203 . . . . 5 𝑥 ∈ V
5 f1ocnv 6149 . . . . 5 (𝑓:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑥)
6 f1oen2g 7972 . . . . 5 ((𝑦 ∈ V ∧ 𝑥 ∈ V ∧ 𝑓:𝑦1-1-onto𝑥) → 𝑦𝑥)
73, 4, 5, 6mp3an12i 1428 . . . 4 (𝑓:𝑥1-1-onto𝑦𝑦𝑥)
87exlimiv 1858 . . 3 (∃𝑓 𝑓:𝑥1-1-onto𝑦𝑦𝑥)
92, 8sylbi 207 . 2 (𝑥𝑦𝑦𝑥)
10 bren 7964 . . 3 (𝑥𝑦 ↔ ∃𝑔 𝑔:𝑥1-1-onto𝑦)
11 bren 7964 . . 3 (𝑦𝑧 ↔ ∃𝑓 𝑓:𝑦1-1-onto𝑧)
12 eeanv 2182 . . . 4 (∃𝑔𝑓(𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) ↔ (∃𝑔 𝑔:𝑥1-1-onto𝑦 ∧ ∃𝑓 𝑓:𝑦1-1-onto𝑧))
13 vex 3203 . . . . . 6 𝑧 ∈ V
14 f1oco 6159 . . . . . . 7 ((𝑓:𝑦1-1-onto𝑧𝑔:𝑥1-1-onto𝑦) → (𝑓𝑔):𝑥1-1-onto𝑧)
1514ancoms 469 . . . . . 6 ((𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) → (𝑓𝑔):𝑥1-1-onto𝑧)
16 f1oen2g 7972 . . . . . 6 ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ (𝑓𝑔):𝑥1-1-onto𝑧) → 𝑥𝑧)
174, 13, 15, 16mp3an12i 1428 . . . . 5 ((𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) → 𝑥𝑧)
1817exlimivv 1860 . . . 4 (∃𝑔𝑓(𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) → 𝑥𝑧)
1912, 18sylbir 225 . . 3 ((∃𝑔 𝑔:𝑥1-1-onto𝑦 ∧ ∃𝑓 𝑓:𝑦1-1-onto𝑧) → 𝑥𝑧)
2010, 11, 19syl2anb 496 . 2 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
214enref 7988 . . 3 𝑥𝑥
224, 212th 254 . 2 (𝑥 ∈ V ↔ 𝑥𝑥)
231, 9, 20, 22iseri 7769 1 ≈ Er V
Colors of variables: wff setvar class
Syntax hints:  wa 384  wex 1704  wcel 1990  Vcvv 3200   class class class wbr 4653  ccnv 5113  ccom 5118  1-1-ontowf1o 5887   Er wer 7739  cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-er 7742  df-en 7956
This theorem is referenced by:  ensymb  8004  entr  8008
  Copyright terms: Public domain W3C validator