MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epini Structured version   Visualization version   GIF version

Theorem epini 5495
Description: Any set is equal to its preimage under the converse epsilon relation. (Contributed by Mario Carneiro, 9-Mar-2013.)
Hypothesis
Ref Expression
epini.1 𝐴 ∈ V
Assertion
Ref Expression
epini ( E “ {𝐴}) = 𝐴

Proof of Theorem epini
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 epini.1 . . . 4 𝐴 ∈ V
2 vex 3203 . . . . 5 𝑥 ∈ V
32eliniseg 5494 . . . 4 (𝐴 ∈ V → (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥 E 𝐴))
41, 3ax-mp 5 . . 3 (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥 E 𝐴)
51epelc 5031 . . 3 (𝑥 E 𝐴𝑥𝐴)
64, 5bitri 264 . 2 (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥𝐴)
76eqriv 2619 1 ( E “ {𝐴}) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177   class class class wbr 4653   E cep 5028  ccnv 5113  cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-eprel 5029  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  infxpenlem  8836  fz1isolem  13245
  Copyright terms: Public domain W3C validator