Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqbrrdv2 Structured version   Visualization version   GIF version

Theorem eqbrrdv2 34148
Description: Other version of eqbrrdiv 5218. (Contributed by Rodolfo Medina, 30-Sep-2010.)
Hypothesis
Ref Expression
eqbrrdv2.1 (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → (𝑥𝐴𝑦𝑥𝐵𝑦))
Assertion
Ref Expression
eqbrrdv2 (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦

Proof of Theorem eqbrrdv2
StepHypRef Expression
1 eqbrrdv2.1 . . . 4 (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → (𝑥𝐴𝑦𝑥𝐵𝑦))
2 df-br 4654 . . . 4 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
3 df-br 4654 . . . 4 (𝑥𝐵𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
41, 2, 33bitr3g 302 . . 3 (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
54eqrelrdv2 5219 . 2 (((Rel 𝐴 ∧ Rel 𝐵) ∧ ((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑)) → 𝐴 = 𝐵)
65anabss5 857 1 (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  cop 4183   class class class wbr 4653  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-in 3581  df-ss 3588  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121
This theorem is referenced by:  prter3  34167
  Copyright terms: Public domain W3C validator