![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3g | Structured version Visualization version GIF version |
Description: More general version of 3bitr3i 290. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
3bitr3g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
3bitr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
Ref | Expression |
---|---|
3bitr3g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3bitr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5bbr 274 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
5 | 3, 4 | syl6bb 276 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: notbid 308 cador 1547 equequ2OLD 1955 cbvexdva 2283 dfsbcq2 3438 unineq 3877 iindif2 4589 reusv2 4874 rabxfrd 4889 opeqex 4962 eqbrrdv 5217 eqbrrdiv 5218 opelco2g 5289 opelcnvg 5302 ralrnmpt 6368 fliftcnv 6561 eusvobj2 6643 ottpos 7362 smoiso 7459 ercnv 7763 ordiso2 8420 cantnfrescl 8573 cantnfp1lem3 8577 cantnflem1b 8583 cantnflem1 8586 cnfcom 8597 cnfcom3lem 8600 carden2 8813 cardeq0 9374 axpownd 9423 fpwwe2lem9 9460 fzen 12358 hasheq0 13154 incexc2 14570 divalglem4 15119 divalglem8 15123 divalgb 15127 divalgmodOLD 15130 sadadd 15189 sadass 15193 smuval2 15204 smumul 15215 isprm3 15396 vdwmc 15682 imasleval 16201 acsfn2 16324 invsym2 16423 yoniso 16925 pmtrfmvdn0 17882 dprd2d2 18443 cmpfi 21211 xkoinjcn 21490 tgpconncomp 21916 iscau3 23076 mbfimaopnlem 23422 ellimc3 23643 eldv 23662 eltayl 24114 atandm3 24605 rmoxfrdOLD 29332 rmoxfrd 29333 opeldifid 29412 2ndpreima 29485 f1od2 29499 ordtconnlem1 29970 bnj1253 31085 br1steqg 31672 br2ndeqg 31673 noetalem3 31865 wl-dral1d 33318 wl-sb8et 33334 wl-equsb3 33337 wl-sb8eut 33359 wl-ax11-lem8 33369 poimirlem2 33411 poimirlem16 33425 poimirlem18 33427 poimirlem21 33430 poimirlem22 33431 eqbrrdv2 34148 islpln5 34821 islvol5 34865 ntrneicls11 38388 radcnvrat 38513 trsbc 38750 aacllem 42547 |
Copyright terms: Public domain | W3C validator |