MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem2 Structured version   Visualization version   GIF version

Theorem vitalilem2 23378
Description: Lemma for vitali 23382. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
vitali.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
vitali.2 𝑆 = ((0[,]1) / )
vitali.3 (𝜑𝐹 Fn 𝑆)
vitali.4 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
vitali.5 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
vitali.6 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
vitali.7 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
Assertion
Ref Expression
vitalilem2 (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚) ∧ 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2)))
Distinct variable groups:   𝑚,𝑛,𝑠,𝑥,𝑦,𝑧,𝐺   𝜑,𝑚,𝑛,𝑥,𝑧   𝑧,𝑆   𝑇,𝑚,𝑥   𝑚,𝐹,𝑛,𝑠,𝑥,𝑦,𝑧   ,𝑚,𝑛,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑠)   𝑆(𝑥,𝑦,𝑚,𝑛,𝑠)   𝑇(𝑦,𝑧,𝑛,𝑠)

Proof of Theorem vitalilem2
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vitali.3 . . . 4 (𝜑𝐹 Fn 𝑆)
2 vitali.4 . . . . 5 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
3 vitali.2 . . . . . . . . 9 𝑆 = ((0[,]1) / )
4 neeq1 2856 . . . . . . . . 9 ([𝑣] = 𝑧 → ([𝑣] ≠ ∅ ↔ 𝑧 ≠ ∅))
5 vitali.1 . . . . . . . . . . . . . 14 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
65vitalilem1 23376 . . . . . . . . . . . . 13 Er (0[,]1)
7 erdm 7752 . . . . . . . . . . . . 13 ( Er (0[,]1) → dom = (0[,]1))
86, 7ax-mp 5 . . . . . . . . . . . 12 dom = (0[,]1)
98eleq2i 2693 . . . . . . . . . . 11 (𝑣 ∈ dom 𝑣 ∈ (0[,]1))
10 ecdmn0 7789 . . . . . . . . . . 11 (𝑣 ∈ dom ↔ [𝑣] ≠ ∅)
119, 10bitr3i 266 . . . . . . . . . 10 (𝑣 ∈ (0[,]1) ↔ [𝑣] ≠ ∅)
1211biimpi 206 . . . . . . . . 9 (𝑣 ∈ (0[,]1) → [𝑣] ≠ ∅)
133, 4, 12ectocl 7815 . . . . . . . 8 (𝑧𝑆𝑧 ≠ ∅)
1413adantl 482 . . . . . . 7 ((𝜑𝑧𝑆) → 𝑧 ≠ ∅)
15 sseq1 3626 . . . . . . . . . 10 ([𝑤] = 𝑧 → ([𝑤] ⊆ (0[,]1) ↔ 𝑧 ⊆ (0[,]1)))
166a1i 11 . . . . . . . . . . 11 (𝑤 ∈ (0[,]1) → Er (0[,]1))
1716ecss 7788 . . . . . . . . . 10 (𝑤 ∈ (0[,]1) → [𝑤] ⊆ (0[,]1))
183, 15, 17ectocl 7815 . . . . . . . . 9 (𝑧𝑆𝑧 ⊆ (0[,]1))
1918adantl 482 . . . . . . . 8 ((𝜑𝑧𝑆) → 𝑧 ⊆ (0[,]1))
2019sseld 3602 . . . . . . 7 ((𝜑𝑧𝑆) → ((𝐹𝑧) ∈ 𝑧 → (𝐹𝑧) ∈ (0[,]1)))
2114, 20embantd 59 . . . . . 6 ((𝜑𝑧𝑆) → ((𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) → (𝐹𝑧) ∈ (0[,]1)))
2221ralimdva 2962 . . . . 5 (𝜑 → (∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) → ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1)))
232, 22mpd 15 . . . 4 (𝜑 → ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1))
24 ffnfv 6388 . . . 4 (𝐹:𝑆⟶(0[,]1) ↔ (𝐹 Fn 𝑆 ∧ ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1)))
251, 23, 24sylanbrc 698 . . 3 (𝜑𝐹:𝑆⟶(0[,]1))
26 frn 6053 . . 3 (𝐹:𝑆⟶(0[,]1) → ran 𝐹 ⊆ (0[,]1))
2725, 26syl 17 . 2 (𝜑 → ran 𝐹 ⊆ (0[,]1))
28 vitali.5 . . . . . . . . 9 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
2928adantr 481 . . . . . . . 8 ((𝜑𝑣 ∈ (0[,]1)) → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
30 f1ocnv 6149 . . . . . . . 8 (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:(ℚ ∩ (-1[,]1))–1-1-onto→ℕ)
31 f1of 6137 . . . . . . . 8 (𝐺:(ℚ ∩ (-1[,]1))–1-1-onto→ℕ → 𝐺:(ℚ ∩ (-1[,]1))⟶ℕ)
3229, 30, 313syl 18 . . . . . . 7 ((𝜑𝑣 ∈ (0[,]1)) → 𝐺:(ℚ ∩ (-1[,]1))⟶ℕ)
33 ovex 6678 . . . . . . . . . . . . . . 15 (0[,]1) ∈ V
34 erex 7766 . . . . . . . . . . . . . . 15 ( Er (0[,]1) → ((0[,]1) ∈ V → ∈ V))
356, 33, 34mp2 9 . . . . . . . . . . . . . 14 ∈ V
3635ecelqsi 7803 . . . . . . . . . . . . 13 (𝑣 ∈ (0[,]1) → [𝑣] ∈ ((0[,]1) / ))
3736adantl 482 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (0[,]1)) → [𝑣] ∈ ((0[,]1) / ))
3837, 3syl6eleqr 2712 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → [𝑣] 𝑆)
392adantr 481 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
40 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ∈ (0[,]1))
4140, 11sylib 208 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → [𝑣] ≠ ∅)
42 neeq1 2856 . . . . . . . . . . . . 13 (𝑧 = [𝑣] → (𝑧 ≠ ∅ ↔ [𝑣] ≠ ∅))
43 fveq2 6191 . . . . . . . . . . . . . 14 (𝑧 = [𝑣] → (𝐹𝑧) = (𝐹‘[𝑣] ))
44 id 22 . . . . . . . . . . . . . 14 (𝑧 = [𝑣] 𝑧 = [𝑣] )
4543, 44eleq12d 2695 . . . . . . . . . . . . 13 (𝑧 = [𝑣] → ((𝐹𝑧) ∈ 𝑧 ↔ (𝐹‘[𝑣] ) ∈ [𝑣] ))
4642, 45imbi12d 334 . . . . . . . . . . . 12 (𝑧 = [𝑣] → ((𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) ↔ ([𝑣] ≠ ∅ → (𝐹‘[𝑣] ) ∈ [𝑣] )))
4746rspcv 3305 . . . . . . . . . . 11 ([𝑣] 𝑆 → (∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) → ([𝑣] ≠ ∅ → (𝐹‘[𝑣] ) ∈ [𝑣] )))
4838, 39, 41, 47syl3c 66 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ∈ [𝑣] )
49 fvex 6201 . . . . . . . . . . . 12 (𝐹‘[𝑣] ) ∈ V
50 vex 3203 . . . . . . . . . . . 12 𝑣 ∈ V
5149, 50elec 7786 . . . . . . . . . . 11 ((𝐹‘[𝑣] ) ∈ [𝑣] 𝑣 (𝐹‘[𝑣] ))
52 oveq12 6659 . . . . . . . . . . . . 13 ((𝑥 = 𝑣𝑦 = (𝐹‘[𝑣] )) → (𝑥𝑦) = (𝑣 − (𝐹‘[𝑣] )))
5352eleq1d 2686 . . . . . . . . . . . 12 ((𝑥 = 𝑣𝑦 = (𝐹‘[𝑣] )) → ((𝑥𝑦) ∈ ℚ ↔ (𝑣 − (𝐹‘[𝑣] )) ∈ ℚ))
5453, 5brab2a 5194 . . . . . . . . . . 11 (𝑣 (𝐹‘[𝑣] ) ↔ ((𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ) ∈ (0[,]1)) ∧ (𝑣 − (𝐹‘[𝑣] )) ∈ ℚ))
5551, 54bitri 264 . . . . . . . . . 10 ((𝐹‘[𝑣] ) ∈ [𝑣] ↔ ((𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ) ∈ (0[,]1)) ∧ (𝑣 − (𝐹‘[𝑣] )) ∈ ℚ))
5648, 55sylib 208 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → ((𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ) ∈ (0[,]1)) ∧ (𝑣 − (𝐹‘[𝑣] )) ∈ ℚ))
5756simprd 479 . . . . . . . 8 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] )) ∈ ℚ)
58 0re 10040 . . . . . . . . . . . . 13 0 ∈ ℝ
59 1re 10039 . . . . . . . . . . . . 13 1 ∈ ℝ
6058, 59elicc2i 12239 . . . . . . . . . . . 12 (𝑣 ∈ (0[,]1) ↔ (𝑣 ∈ ℝ ∧ 0 ≤ 𝑣𝑣 ≤ 1))
6140, 60sylib 208 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 ∈ ℝ ∧ 0 ≤ 𝑣𝑣 ≤ 1))
6261simp1d 1073 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ∈ ℝ)
6356simpld 475 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ) ∈ (0[,]1)))
6463simprd 479 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ∈ (0[,]1))
6558, 59elicc2i 12239 . . . . . . . . . . . 12 ((𝐹‘[𝑣] ) ∈ (0[,]1) ↔ ((𝐹‘[𝑣] ) ∈ ℝ ∧ 0 ≤ (𝐹‘[𝑣] ) ∧ (𝐹‘[𝑣] ) ≤ 1))
6664, 65sylib 208 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ) ∈ ℝ ∧ 0 ≤ (𝐹‘[𝑣] ) ∧ (𝐹‘[𝑣] ) ≤ 1))
6766simp1d 1073 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ∈ ℝ)
6862, 67resubcld 10458 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] )) ∈ ℝ)
6967, 62resubcld 10458 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ) − 𝑣) ∈ ℝ)
70 1red 10055 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (0[,]1)) → 1 ∈ ℝ)
7161simp2d 1074 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (0[,]1)) → 0 ≤ 𝑣)
7267, 62subge02d 10619 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (0[,]1)) → (0 ≤ 𝑣 ↔ ((𝐹‘[𝑣] ) − 𝑣) ≤ (𝐹‘[𝑣] )))
7371, 72mpbid 222 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ) − 𝑣) ≤ (𝐹‘[𝑣] ))
7466simp3d 1075 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ≤ 1)
7569, 67, 70, 73, 74letrd 10194 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ) − 𝑣) ≤ 1)
7669, 70lenegd 10606 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → (((𝐹‘[𝑣] ) − 𝑣) ≤ 1 ↔ -1 ≤ -((𝐹‘[𝑣] ) − 𝑣)))
7775, 76mpbid 222 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → -1 ≤ -((𝐹‘[𝑣] ) − 𝑣))
7867recnd 10068 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ∈ ℂ)
7962recnd 10068 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ∈ ℂ)
8078, 79negsubdi2d 10408 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → -((𝐹‘[𝑣] ) − 𝑣) = (𝑣 − (𝐹‘[𝑣] )))
8177, 80breqtrd 4679 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → -1 ≤ (𝑣 − (𝐹‘[𝑣] )))
8266simp2d 1074 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → 0 ≤ (𝐹‘[𝑣] ))
8362, 67subge02d 10619 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → (0 ≤ (𝐹‘[𝑣] ) ↔ (𝑣 − (𝐹‘[𝑣] )) ≤ 𝑣))
8482, 83mpbid 222 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] )) ≤ 𝑣)
8561simp3d 1075 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ≤ 1)
8668, 62, 70, 84, 85letrd 10194 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] )) ≤ 1)
87 neg1rr 11125 . . . . . . . . . 10 -1 ∈ ℝ
8887, 59elicc2i 12239 . . . . . . . . 9 ((𝑣 − (𝐹‘[𝑣] )) ∈ (-1[,]1) ↔ ((𝑣 − (𝐹‘[𝑣] )) ∈ ℝ ∧ -1 ≤ (𝑣 − (𝐹‘[𝑣] )) ∧ (𝑣 − (𝐹‘[𝑣] )) ≤ 1))
8968, 81, 86, 88syl3anbrc 1246 . . . . . . . 8 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] )) ∈ (-1[,]1))
9057, 89elind 3798 . . . . . . 7 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] )) ∈ (ℚ ∩ (-1[,]1)))
9132, 90ffvelrnd 6360 . . . . . 6 ((𝜑𝑣 ∈ (0[,]1)) → (𝐺‘(𝑣 − (𝐹‘[𝑣] ))) ∈ ℕ)
92 f1ocnvfv2 6533 . . . . . . . . . . . 12 ((𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ (𝑣 − (𝐹‘[𝑣] )) ∈ (ℚ ∩ (-1[,]1))) → (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))) = (𝑣 − (𝐹‘[𝑣] )))
9329, 90, 92syl2anc 693 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))) = (𝑣 − (𝐹‘[𝑣] )))
9493oveq2d 6666 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) = (𝑣 − (𝑣 − (𝐹‘[𝑣] ))))
9579, 78nncand 10397 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝑣 − (𝐹‘[𝑣] ))) = (𝐹‘[𝑣] ))
9694, 95eqtrd 2656 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) = (𝐹‘[𝑣] ))
971adantr 481 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → 𝐹 Fn 𝑆)
98 fnfvelrn 6356 . . . . . . . . . 10 ((𝐹 Fn 𝑆 ∧ [𝑣] 𝑆) → (𝐹‘[𝑣] ) ∈ ran 𝐹)
9997, 38, 98syl2anc 693 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ∈ ran 𝐹)
10096, 99eqeltrd 2701 . . . . . . . 8 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹)
101 oveq1 6657 . . . . . . . . . 10 (𝑠 = 𝑣 → (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) = (𝑣 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))))
102101eleq1d 2686 . . . . . . . . 9 (𝑠 = 𝑣 → ((𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹 ↔ (𝑣 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹))
103102elrab 3363 . . . . . . . 8 (𝑣 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹} ↔ (𝑣 ∈ ℝ ∧ (𝑣 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹))
10462, 100, 103sylanbrc 698 . . . . . . 7 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹})
105 fveq2 6191 . . . . . . . . . . . 12 (𝑛 = (𝐺‘(𝑣 − (𝐹‘[𝑣] ))) → (𝐺𝑛) = (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))))
106105oveq2d 6666 . . . . . . . . . . 11 (𝑛 = (𝐺‘(𝑣 − (𝐹‘[𝑣] ))) → (𝑠 − (𝐺𝑛)) = (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))))
107106eleq1d 2686 . . . . . . . . . 10 (𝑛 = (𝐺‘(𝑣 − (𝐹‘[𝑣] ))) → ((𝑠 − (𝐺𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹))
108107rabbidv 3189 . . . . . . . . 9 (𝑛 = (𝐺‘(𝑣 − (𝐹‘[𝑣] ))) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹})
109 vitali.6 . . . . . . . . 9 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
110 reex 10027 . . . . . . . . . 10 ℝ ∈ V
111110rabex 4813 . . . . . . . . 9 {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹} ∈ V
112108, 109, 111fvmpt 6282 . . . . . . . 8 ((𝐺‘(𝑣 − (𝐹‘[𝑣] ))) ∈ ℕ → (𝑇‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹})
11391, 112syl 17 . . . . . . 7 ((𝜑𝑣 ∈ (0[,]1)) → (𝑇‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹})
114104, 113eleqtrrd 2704 . . . . . 6 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ∈ (𝑇‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))))
11591, 114jca 554 . . . . 5 ((𝜑𝑣 ∈ (0[,]1)) → ((𝐺‘(𝑣 − (𝐹‘[𝑣] ))) ∈ ℕ ∧ 𝑣 ∈ (𝑇‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))))
116 fveq2 6191 . . . . . 6 (𝑚 = (𝐺‘(𝑣 − (𝐹‘[𝑣] ))) → (𝑇𝑚) = (𝑇‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))))
117116eliuni 4526 . . . . 5 (((𝐺‘(𝑣 − (𝐹‘[𝑣] ))) ∈ ℕ ∧ 𝑣 ∈ (𝑇‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) → 𝑣 𝑚 ∈ ℕ (𝑇𝑚))
118115, 117syl 17 . . . 4 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 𝑚 ∈ ℕ (𝑇𝑚))
119118ex 450 . . 3 (𝜑 → (𝑣 ∈ (0[,]1) → 𝑣 𝑚 ∈ ℕ (𝑇𝑚)))
120119ssrdv 3609 . 2 (𝜑 → (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚))
121 eliun 4524 . . . 4 (𝑥 𝑚 ∈ ℕ (𝑇𝑚) ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑇𝑚))
122 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝐺𝑛) = (𝐺𝑚))
123122oveq2d 6666 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑠 − (𝐺𝑛)) = (𝑠 − (𝐺𝑚)))
124123eleq1d 2686 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝑠 − (𝐺𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹))
125124rabbidv 3189 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
126110rabex 4813 . . . . . . . . . . . . 13 {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹} ∈ V
127125, 109, 126fvmpt 6282 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝑇𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
128127adantl 482 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
129128eleq2d 2687 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ (𝑇𝑚) ↔ 𝑥 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹}))
130129biimpa 501 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 𝑥 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
131 oveq1 6657 . . . . . . . . . . 11 (𝑠 = 𝑥 → (𝑠 − (𝐺𝑚)) = (𝑥 − (𝐺𝑚)))
132131eleq1d 2686 . . . . . . . . . 10 (𝑠 = 𝑥 → ((𝑠 − (𝐺𝑚)) ∈ ran 𝐹 ↔ (𝑥 − (𝐺𝑚)) ∈ ran 𝐹))
133132elrab 3363 . . . . . . . . 9 (𝑥 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹} ↔ (𝑥 ∈ ℝ ∧ (𝑥 − (𝐺𝑚)) ∈ ran 𝐹))
134130, 133sylib 208 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝑥 ∈ ℝ ∧ (𝑥 − (𝐺𝑚)) ∈ ran 𝐹))
135134simpld 475 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 𝑥 ∈ ℝ)
13687a1i 11 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → -1 ∈ ℝ)
137 iccssre 12255 . . . . . . . . . . 11 ((-1 ∈ ℝ ∧ 1 ∈ ℝ) → (-1[,]1) ⊆ ℝ)
13887, 59, 137mp2an 708 . . . . . . . . . 10 (-1[,]1) ⊆ ℝ
139 inss2 3834 . . . . . . . . . . 11 (ℚ ∩ (-1[,]1)) ⊆ (-1[,]1)
140 f1of 6137 . . . . . . . . . . . . 13 (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
14128, 140syl 17 . . . . . . . . . . . 12 (𝜑𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
142141ffvelrnda 6359 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ (ℚ ∩ (-1[,]1)))
143139, 142sseldi 3601 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ (-1[,]1))
144138, 143sseldi 3601 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ ℝ)
145144adantr 481 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝐺𝑚) ∈ ℝ)
146143adantr 481 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝐺𝑚) ∈ (-1[,]1))
14787, 59elicc2i 12239 . . . . . . . . . 10 ((𝐺𝑚) ∈ (-1[,]1) ↔ ((𝐺𝑚) ∈ ℝ ∧ -1 ≤ (𝐺𝑚) ∧ (𝐺𝑚) ≤ 1))
148146, 147sylib 208 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ((𝐺𝑚) ∈ ℝ ∧ -1 ≤ (𝐺𝑚) ∧ (𝐺𝑚) ≤ 1))
149148simp2d 1074 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → -1 ≤ (𝐺𝑚))
15027ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ran 𝐹 ⊆ (0[,]1))
151134simprd 479 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝑥 − (𝐺𝑚)) ∈ ran 𝐹)
152150, 151sseldd 3604 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝑥 − (𝐺𝑚)) ∈ (0[,]1))
15358, 59elicc2i 12239 . . . . . . . . . . 11 ((𝑥 − (𝐺𝑚)) ∈ (0[,]1) ↔ ((𝑥 − (𝐺𝑚)) ∈ ℝ ∧ 0 ≤ (𝑥 − (𝐺𝑚)) ∧ (𝑥 − (𝐺𝑚)) ≤ 1))
154152, 153sylib 208 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ((𝑥 − (𝐺𝑚)) ∈ ℝ ∧ 0 ≤ (𝑥 − (𝐺𝑚)) ∧ (𝑥 − (𝐺𝑚)) ≤ 1))
155154simp2d 1074 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 0 ≤ (𝑥 − (𝐺𝑚)))
156135, 145subge0d 10617 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (0 ≤ (𝑥 − (𝐺𝑚)) ↔ (𝐺𝑚) ≤ 𝑥))
157155, 156mpbid 222 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝐺𝑚) ≤ 𝑥)
158136, 145, 135, 149, 157letrd 10194 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → -1 ≤ 𝑥)
159 peano2re 10209 . . . . . . . . 9 ((𝐺𝑚) ∈ ℝ → ((𝐺𝑚) + 1) ∈ ℝ)
160145, 159syl 17 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ((𝐺𝑚) + 1) ∈ ℝ)
161 2re 11090 . . . . . . . . 9 2 ∈ ℝ
162161a1i 11 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 2 ∈ ℝ)
163154simp3d 1075 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝑥 − (𝐺𝑚)) ≤ 1)
164 1red 10055 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 1 ∈ ℝ)
165135, 145, 164lesubadd2d 10626 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ((𝑥 − (𝐺𝑚)) ≤ 1 ↔ 𝑥 ≤ ((𝐺𝑚) + 1)))
166163, 165mpbid 222 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 𝑥 ≤ ((𝐺𝑚) + 1))
167148simp3d 1075 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝐺𝑚) ≤ 1)
168145, 164, 164, 167leadd1dd 10641 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ((𝐺𝑚) + 1) ≤ (1 + 1))
169 df-2 11079 . . . . . . . . 9 2 = (1 + 1)
170168, 169syl6breqr 4695 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ((𝐺𝑚) + 1) ≤ 2)
171135, 160, 162, 166, 170letrd 10194 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 𝑥 ≤ 2)
17287, 161elicc2i 12239 . . . . . . 7 (𝑥 ∈ (-1[,]2) ↔ (𝑥 ∈ ℝ ∧ -1 ≤ 𝑥𝑥 ≤ 2))
173135, 158, 171, 172syl3anbrc 1246 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 𝑥 ∈ (-1[,]2))
174173ex 450 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ (𝑇𝑚) → 𝑥 ∈ (-1[,]2)))
175174rexlimdva 3031 . . . 4 (𝜑 → (∃𝑚 ∈ ℕ 𝑥 ∈ (𝑇𝑚) → 𝑥 ∈ (-1[,]2)))
176121, 175syl5bi 232 . . 3 (𝜑 → (𝑥 𝑚 ∈ ℕ (𝑇𝑚) → 𝑥 ∈ (-1[,]2)))
177176ssrdv 3609 . 2 (𝜑 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2))
17827, 120, 1773jca 1242 1 (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚) ∧ 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158   ciun 4520   class class class wbr 4653  {copab 4712  cmpt 4729  ccnv 5113  dom cdm 5114  ran crn 5115   Fn wfn 5883  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650   Er wer 7739  [cec 7740   / cqs 7741  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  cle 10075  cmin 10266  -cneg 10267  cn 11020  2c2 11070  cq 11788  [,]cicc 12178  volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-ec 7744  df-qs 7748  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-q 11789  df-icc 12182
This theorem is referenced by:  vitalilem3  23379  vitalilem4  23380  vitalilem5  23381
  Copyright terms: Public domain W3C validator