MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem3 Structured version   Visualization version   GIF version

Theorem sylow1lem3 18015
Description: Lemma for sylow1 18018. One of the orbits of the group action has p-adic valuation less than the prime count of the set 𝑆. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (#‘𝑋))
sylow1lem.a + = (+g𝐺)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (#‘𝑠) = (𝑃𝑁)}
sylow1lem.m = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
sylow1lem3.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
sylow1lem3 (𝜑 → ∃𝑤𝑆 (𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁))
Distinct variable groups:   𝑔,𝑠,𝑥,𝑦,𝑧,𝑤   𝑆,𝑔   𝑥,𝑤,𝑦,𝑧,𝑆   𝑔,𝑁   𝑤,𝑠,𝑁,𝑥,𝑦,𝑧   𝑔,𝑋,𝑠,𝑤,𝑥,𝑦,𝑧   + ,𝑠,𝑤,𝑥,𝑦,𝑧   𝑤, ,𝑧   ,𝑔,𝑤,𝑥,𝑦,𝑧   𝑔,𝐺,𝑠,𝑥,𝑦,𝑧   𝑃,𝑔,𝑠,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑔,𝑠)   + (𝑔)   (𝑠)   (𝑥,𝑦,𝑔,𝑠)   𝑆(𝑠)   𝐺(𝑤)

Proof of Theorem sylow1lem3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sylow1.p . . . . . 6 (𝜑𝑃 ∈ ℙ)
2 sylow1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
3 sylow1.g . . . . . . . 8 (𝜑𝐺 ∈ Grp)
4 sylow1.f . . . . . . . 8 (𝜑𝑋 ∈ Fin)
5 sylow1.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
6 sylow1.d . . . . . . . 8 (𝜑 → (𝑃𝑁) ∥ (#‘𝑋))
7 sylow1lem.a . . . . . . . 8 + = (+g𝐺)
8 sylow1lem.s . . . . . . . 8 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (#‘𝑠) = (𝑃𝑁)}
92, 3, 4, 1, 5, 6, 7, 8sylow1lem1 18013 . . . . . . 7 (𝜑 → ((#‘𝑆) ∈ ℕ ∧ (𝑃 pCnt (#‘𝑆)) = ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
109simpld 475 . . . . . 6 (𝜑 → (#‘𝑆) ∈ ℕ)
11 pcndvds 15570 . . . . . 6 ((𝑃 ∈ ℙ ∧ (#‘𝑆) ∈ ℕ) → ¬ (𝑃↑((𝑃 pCnt (#‘𝑆)) + 1)) ∥ (#‘𝑆))
121, 10, 11syl2anc 693 . . . . 5 (𝜑 → ¬ (𝑃↑((𝑃 pCnt (#‘𝑆)) + 1)) ∥ (#‘𝑆))
139simprd 479 . . . . . . . 8 (𝜑 → (𝑃 pCnt (#‘𝑆)) = ((𝑃 pCnt (#‘𝑋)) − 𝑁))
1413oveq1d 6665 . . . . . . 7 (𝜑 → ((𝑃 pCnt (#‘𝑆)) + 1) = (((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1))
1514oveq2d 6666 . . . . . 6 (𝜑 → (𝑃↑((𝑃 pCnt (#‘𝑆)) + 1)) = (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)))
16 sylow1lem.m . . . . . . . . 9 = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
172, 3, 4, 1, 5, 6, 7, 8, 16sylow1lem2 18014 . . . . . . . 8 (𝜑 ∈ (𝐺 GrpAct 𝑆))
18 sylow1lem3.1 . . . . . . . . 9 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
1918, 2gaorber 17741 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑆) → Er 𝑆)
2017, 19syl 17 . . . . . . 7 (𝜑 Er 𝑆)
21 pwfi 8261 . . . . . . . . 9 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
224, 21sylib 208 . . . . . . . 8 (𝜑 → 𝒫 𝑋 ∈ Fin)
23 ssrab2 3687 . . . . . . . . 9 {𝑠 ∈ 𝒫 𝑋 ∣ (#‘𝑠) = (𝑃𝑁)} ⊆ 𝒫 𝑋
248, 23eqsstri 3635 . . . . . . . 8 𝑆 ⊆ 𝒫 𝑋
25 ssfi 8180 . . . . . . . 8 ((𝒫 𝑋 ∈ Fin ∧ 𝑆 ⊆ 𝒫 𝑋) → 𝑆 ∈ Fin)
2622, 24, 25sylancl 694 . . . . . . 7 (𝜑𝑆 ∈ Fin)
2720, 26qshash 14559 . . . . . 6 (𝜑 → (#‘𝑆) = Σ𝑧 ∈ (𝑆 / )(#‘𝑧))
2815, 27breq12d 4666 . . . . 5 (𝜑 → ((𝑃↑((𝑃 pCnt (#‘𝑆)) + 1)) ∥ (#‘𝑆) ↔ (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / )(#‘𝑧)))
2912, 28mtbid 314 . . . 4 (𝜑 → ¬ (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / )(#‘𝑧))
30 pwfi 8261 . . . . . . . 8 (𝑆 ∈ Fin ↔ 𝒫 𝑆 ∈ Fin)
3126, 30sylib 208 . . . . . . 7 (𝜑 → 𝒫 𝑆 ∈ Fin)
3220qsss 7808 . . . . . . 7 (𝜑 → (𝑆 / ) ⊆ 𝒫 𝑆)
33 ssfi 8180 . . . . . . 7 ((𝒫 𝑆 ∈ Fin ∧ (𝑆 / ) ⊆ 𝒫 𝑆) → (𝑆 / ) ∈ Fin)
3431, 32, 33syl2anc 693 . . . . . 6 (𝜑 → (𝑆 / ) ∈ Fin)
3534adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) → (𝑆 / ) ∈ Fin)
36 prmnn 15388 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
371, 36syl 17 . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
381, 10pccld 15555 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (#‘𝑆)) ∈ ℕ0)
3913, 38eqeltrrd 2702 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt (#‘𝑋)) − 𝑁) ∈ ℕ0)
40 peano2nn0 11333 . . . . . . . . 9 (((𝑃 pCnt (#‘𝑋)) − 𝑁) ∈ ℕ0 → (((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1) ∈ ℕ0)
4139, 40syl 17 . . . . . . . 8 (𝜑 → (((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1) ∈ ℕ0)
4237, 41nnexpcld 13030 . . . . . . 7 (𝜑 → (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)) ∈ ℕ)
4342nnzd 11481 . . . . . 6 (𝜑 → (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)) ∈ ℤ)
4443adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) → (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)) ∈ ℤ)
45 erdm 7752 . . . . . . . . . 10 ( Er 𝑆 → dom = 𝑆)
4620, 45syl 17 . . . . . . . . 9 (𝜑 → dom = 𝑆)
47 elqsn0 7816 . . . . . . . . 9 ((dom = 𝑆𝑧 ∈ (𝑆 / )) → 𝑧 ≠ ∅)
4846, 47sylan 488 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧 ≠ ∅)
4926adantr 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑆 ∈ Fin)
5032sselda 3603 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧 ∈ 𝒫 𝑆)
5150elpwid 4170 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧𝑆)
52 ssfi 8180 . . . . . . . . . 10 ((𝑆 ∈ Fin ∧ 𝑧𝑆) → 𝑧 ∈ Fin)
5349, 51, 52syl2anc 693 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧 ∈ Fin)
54 hashnncl 13157 . . . . . . . . 9 (𝑧 ∈ Fin → ((#‘𝑧) ∈ ℕ ↔ 𝑧 ≠ ∅))
5553, 54syl 17 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑆 / )) → ((#‘𝑧) ∈ ℕ ↔ 𝑧 ≠ ∅))
5648, 55mpbird 247 . . . . . . 7 ((𝜑𝑧 ∈ (𝑆 / )) → (#‘𝑧) ∈ ℕ)
5756adantlr 751 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (#‘𝑧) ∈ ℕ)
5857nnzd 11481 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (#‘𝑧) ∈ ℤ)
59 fveq2 6191 . . . . . . . . . . . . 13 (𝑎 = 𝑧 → (#‘𝑎) = (#‘𝑧))
6059oveq2d 6666 . . . . . . . . . . . 12 (𝑎 = 𝑧 → (𝑃 pCnt (#‘𝑎)) = (𝑃 pCnt (#‘𝑧)))
6160breq1d 4663 . . . . . . . . . . 11 (𝑎 = 𝑧 → ((𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (#‘𝑧)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
6261notbid 308 . . . . . . . . . 10 (𝑎 = 𝑧 → (¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) ↔ ¬ (𝑃 pCnt (#‘𝑧)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
6362rspccva 3308 . . . . . . . . 9 ((∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) ∧ 𝑧 ∈ (𝑆 / )) → ¬ (𝑃 pCnt (#‘𝑧)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁))
6463adantll 750 . . . . . . . 8 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ¬ (𝑃 pCnt (#‘𝑧)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁))
652grpbn0 17451 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
663, 65syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 ≠ ∅)
67 hashnncl 13157 . . . . . . . . . . . . . . . 16 (𝑋 ∈ Fin → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
684, 67syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
6966, 68mpbird 247 . . . . . . . . . . . . . 14 (𝜑 → (#‘𝑋) ∈ ℕ)
701, 69pccld 15555 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (#‘𝑋)) ∈ ℕ0)
7170nn0zd 11480 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt (#‘𝑋)) ∈ ℤ)
725nn0zd 11480 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
7371, 72zsubcld 11487 . . . . . . . . . . 11 (𝜑 → ((𝑃 pCnt (#‘𝑋)) − 𝑁) ∈ ℤ)
7473ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((𝑃 pCnt (#‘𝑋)) − 𝑁) ∈ ℤ)
7574zred 11482 . . . . . . . . 9 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((𝑃 pCnt (#‘𝑋)) − 𝑁) ∈ ℝ)
761ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → 𝑃 ∈ ℙ)
7776, 57pccld 15555 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃 pCnt (#‘𝑧)) ∈ ℕ0)
7877nn0zd 11480 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃 pCnt (#‘𝑧)) ∈ ℤ)
7978zred 11482 . . . . . . . . 9 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃 pCnt (#‘𝑧)) ∈ ℝ)
8075, 79ltnled 10184 . . . . . . . 8 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (#‘𝑋)) − 𝑁) < (𝑃 pCnt (#‘𝑧)) ↔ ¬ (𝑃 pCnt (#‘𝑧)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
8164, 80mpbird 247 . . . . . . 7 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((𝑃 pCnt (#‘𝑋)) − 𝑁) < (𝑃 pCnt (#‘𝑧)))
82 zltp1le 11427 . . . . . . . 8 ((((𝑃 pCnt (#‘𝑋)) − 𝑁) ∈ ℤ ∧ (𝑃 pCnt (#‘𝑧)) ∈ ℤ) → (((𝑃 pCnt (#‘𝑋)) − 𝑁) < (𝑃 pCnt (#‘𝑧)) ↔ (((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (#‘𝑧))))
8374, 78, 82syl2anc 693 . . . . . . 7 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (#‘𝑋)) − 𝑁) < (𝑃 pCnt (#‘𝑧)) ↔ (((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (#‘𝑧))))
8481, 83mpbid 222 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (#‘𝑧)))
8541ad2antrr 762 . . . . . . 7 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1) ∈ ℕ0)
86 pcdvdsb 15573 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (#‘𝑧) ∈ ℤ ∧ (((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1) ∈ ℕ0) → ((((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (#‘𝑧)) ↔ (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)) ∥ (#‘𝑧)))
8776, 58, 85, 86syl3anc 1326 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (#‘𝑧)) ↔ (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)) ∥ (#‘𝑧)))
8884, 87mpbid 222 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)) ∥ (#‘𝑧))
8935, 44, 58, 88fsumdvds 15030 . . . 4 ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) → (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / )(#‘𝑧))
9029, 89mtand 691 . . 3 (𝜑 → ¬ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁))
91 dfrex2 2996 . . 3 (∃𝑎 ∈ (𝑆 / )(𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) ↔ ¬ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁))
9290, 91sylibr 224 . 2 (𝜑 → ∃𝑎 ∈ (𝑆 / )(𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁))
93 eqid 2622 . . . 4 (𝑆 / ) = (𝑆 / )
94 fveq2 6191 . . . . . . 7 ([𝑧] = 𝑎 → (#‘[𝑧] ) = (#‘𝑎))
9594oveq2d 6666 . . . . . 6 ([𝑧] = 𝑎 → (𝑃 pCnt (#‘[𝑧] )) = (𝑃 pCnt (#‘𝑎)))
9695breq1d 4663 . . . . 5 ([𝑧] = 𝑎 → ((𝑃 pCnt (#‘[𝑧] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
9796imbi1d 331 . . . 4 ([𝑧] = 𝑎 → (((𝑃 pCnt (#‘[𝑧] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ↔ ((𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁))))
98 eceq1 7782 . . . . . . . . . 10 (𝑤 = 𝑧 → [𝑤] = [𝑧] )
9998fveq2d 6195 . . . . . . . . 9 (𝑤 = 𝑧 → (#‘[𝑤] ) = (#‘[𝑧] ))
10099oveq2d 6666 . . . . . . . 8 (𝑤 = 𝑧 → (𝑃 pCnt (#‘[𝑤] )) = (𝑃 pCnt (#‘[𝑧] )))
101100breq1d 4663 . . . . . . 7 (𝑤 = 𝑧 → ((𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (#‘[𝑧] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
102101rspcev 3309 . . . . . 6 ((𝑧𝑆 ∧ (𝑃 pCnt (#‘[𝑧] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) → ∃𝑤𝑆 (𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁))
103102ex 450 . . . . 5 (𝑧𝑆 → ((𝑃 pCnt (#‘[𝑧] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
104103adantl 482 . . . 4 ((𝜑𝑧𝑆) → ((𝑃 pCnt (#‘[𝑧] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
10593, 97, 104ectocld 7814 . . 3 ((𝜑𝑎 ∈ (𝑆 / )) → ((𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
106105rexlimdva 3031 . 2 (𝜑 → (∃𝑎 ∈ (𝑆 / )(𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
10792, 106mpd 15 1 (𝜑 → ∃𝑤𝑆 (𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  wss 3574  c0 3915  𝒫 cpw 4158  {cpr 4179   class class class wbr 4653  {copab 4712  cmpt 4729  dom cdm 5114  ran crn 5115  cfv 5888  (class class class)co 6650  cmpt2 6652   Er wer 7739  [cec 7740   / cqs 7741  Fincfn 7955  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266  cn 11020  0cn0 11292  cz 11377  cexp 12860  #chash 13117  Σcsu 14416  cdvds 14983  cprime 15385   pCnt cpc 15541  Basecbs 15857  +gcplusg 15941  Grpcgrp 17422   GrpAct cga 17722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-ga 17723
This theorem is referenced by:  sylow1  18018
  Copyright terms: Public domain W3C validator