Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq12dvaf Structured version   Visualization version   GIF version

Theorem esumeq12dvaf 30093
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 26-Mar-2017.)
Hypotheses
Ref Expression
esumeq12dvaf.1 𝑘𝜑
esumeq12dvaf.2 (𝜑𝐴 = 𝐵)
esumeq12dvaf.3 ((𝜑𝑘𝐴) → 𝐶 = 𝐷)
Assertion
Ref Expression
esumeq12dvaf (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐷)

Proof of Theorem esumeq12dvaf
StepHypRef Expression
1 esumeq12dvaf.1 . . . . . 6 𝑘𝜑
2 esumeq12dvaf.2 . . . . . 6 (𝜑𝐴 = 𝐵)
31, 2alrimi 2082 . . . . 5 (𝜑 → ∀𝑘 𝐴 = 𝐵)
4 esumeq12dvaf.3 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 = 𝐷)
54ex 450 . . . . . 6 (𝜑 → (𝑘𝐴𝐶 = 𝐷))
61, 5ralrimi 2957 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶 = 𝐷)
7 mpteq12f 4731 . . . . 5 ((∀𝑘 𝐴 = 𝐵 ∧ ∀𝑘𝐴 𝐶 = 𝐷) → (𝑘𝐴𝐶) = (𝑘𝐵𝐷))
83, 6, 7syl2anc 693 . . . 4 (𝜑 → (𝑘𝐴𝐶) = (𝑘𝐵𝐷))
98oveq2d 6666 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐷)))
109unieqd 4446 . 2 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐷)))
11 df-esum 30090 . 2 Σ*𝑘𝐴𝐶 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
12 df-esum 30090 . 2 Σ*𝑘𝐵𝐷 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐷))
1310, 11, 123eqtr4g 2681 1 (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1481   = wceq 1483  wnf 1708  wcel 1990  wral 2912   cuni 4436  cmpt 4729  (class class class)co 6650  0cc0 9936  +∞cpnf 10071  [,]cicc 12178  s cress 15858  *𝑠cxrs 16160   tsums ctsu 21929  Σ*cesum 30089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-iota 5851  df-fv 5896  df-ov 6653  df-esum 30090
This theorem is referenced by:  esumeq12dva  30094  esumeq1d  30097  esumeq2d  30099  esumpinfval  30135  measvunilem0  30276
  Copyright terms: Public domain W3C validator