![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpteq12f | Structured version Visualization version GIF version |
Description: An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq12f | ⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2028 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 𝐴 = 𝐶 | |
2 | nfra1 2941 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 = 𝐷 | |
3 | 1, 2 | nfan 1828 | . . 3 ⊢ Ⅎ𝑥(∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) |
4 | nfv 1843 | . . 3 ⊢ Ⅎ𝑦(∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) | |
5 | rspa 2930 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 = 𝐷 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) | |
6 | 5 | eqeq2d 2632 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 = 𝐷 ∧ 𝑥 ∈ 𝐴) → (𝑦 = 𝐵 ↔ 𝑦 = 𝐷)) |
7 | 6 | pm5.32da 673 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐷 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷))) |
8 | sp 2053 | . . . . . 6 ⊢ (∀𝑥 𝐴 = 𝐶 → 𝐴 = 𝐶) | |
9 | 8 | eleq2d 2687 | . . . . 5 ⊢ (∀𝑥 𝐴 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶)) |
10 | 9 | anbi1d 741 | . . . 4 ⊢ (∀𝑥 𝐴 = 𝐶 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷))) |
11 | 7, 10 | sylan9bbr 737 | . . 3 ⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷))) |
12 | 3, 4, 11 | opabbid 4715 | . 2 ⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷)}) |
13 | df-mpt 4730 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
14 | df-mpt 4730 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ 𝐷) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷)} | |
15 | 12, 13, 14 | 3eqtr4g 2681 | 1 ⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∀wal 1481 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {copab 4712 ↦ cmpt 4729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ral 2917 df-opab 4713 df-mpt 4730 |
This theorem is referenced by: mpteq12dva 4732 mpteq12 4736 mpteq2ia 4740 mpteq2da 4743 esumeq12dvaf 30093 refsum2cnlem1 39196 mpteq1df 39443 mpteq12da 39452 smfsupmpt 41021 smfinflem 41023 smfinfmpt 41025 |
Copyright terms: Public domain | W3C validator |