MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eulplig Structured version   Visualization version   GIF version

Theorem eulplig 27337
Description: Through two distinct points of a planar incidence geometry, there is a unique line. (Contributed by BJ, 2-Dec-2021.)
Hypothesis
Ref Expression
eulplig.1 𝑃 = 𝐺
Assertion
Ref Expression
eulplig ((𝐺 ∈ Plig ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵)) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))
Distinct variable groups:   𝐺,𝑙   𝐴,𝑙   𝐵,𝑙
Allowed substitution hint:   𝑃(𝑙)

Proof of Theorem eulplig
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulplig.1 . . . . 5 𝑃 = 𝐺
21isplig 27328 . . . 4 (𝐺 ∈ Plig → (𝐺 ∈ Plig ↔ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
32ibi 256 . . 3 (𝐺 ∈ Plig → (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)))
4 simp1 1061 . . 3 ((∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)) → ∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)))
5 simpl 473 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑎 = 𝐴)
6 simpr 477 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑏 = 𝐵)
75, 6neeq12d 2855 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎𝑏𝐴𝐵))
8 eleq1 2689 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎𝑙𝐴𝑙))
9 eleq1 2689 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑏𝑙𝐵𝑙))
108, 9bi2anan9 917 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝑙𝑏𝑙) ↔ (𝐴𝑙𝐵𝑙)))
1110reubidv 3126 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = 𝐵) → (∃!𝑙𝐺 (𝑎𝑙𝑏𝑙) ↔ ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙)))
127, 11imbi12d 334 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ↔ (𝐴𝐵 → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))))
1312rspc2gv 3321 . . . . . 6 ((𝐴𝑃𝐵𝑃) → (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) → (𝐴𝐵 → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))))
1413com23 86 . . . . 5 ((𝐴𝑃𝐵𝑃) → (𝐴𝐵 → (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))))
1514imp 445 . . . 4 (((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵) → (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙)))
1615com12 32 . . 3 (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) → (((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙)))
173, 4, 163syl 18 . 2 (𝐺 ∈ Plig → (((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙)))
1817imp 445 1 ((𝐺 ∈ Plig ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵)) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  ∃!wreu 2914   cuni 4436  Pligcplig 27326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-v 3202  df-uni 4437  df-plig 27327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator