MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isplig Structured version   Visualization version   GIF version

Theorem isplig 27328
Description: The predicate "is a planar incidence geometry" for sets. (Contributed by FL, 2-Aug-2009.)
Hypothesis
Ref Expression
isplig.1 𝑃 = 𝐺
Assertion
Ref Expression
isplig (𝐺𝐴 → (𝐺 ∈ Plig ↔ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑙,𝐺   𝑃,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐴(𝑎,𝑏,𝑐,𝑙)   𝑃(𝑙)

Proof of Theorem isplig
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unieq 4444 . . . . 5 (𝑥 = 𝐺 𝑥 = 𝐺)
2 isplig.1 . . . . 5 𝑃 = 𝐺
31, 2syl6eqr 2674 . . . 4 (𝑥 = 𝐺 𝑥 = 𝑃)
4 reueq1 3140 . . . . . 6 (𝑥 = 𝐺 → (∃!𝑙𝑥 (𝑎𝑙𝑏𝑙) ↔ ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)))
54imbi2d 330 . . . . 5 (𝑥 = 𝐺 → ((𝑎𝑏 → ∃!𝑙𝑥 (𝑎𝑙𝑏𝑙)) ↔ (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙))))
63, 5raleqbidv 3152 . . . 4 (𝑥 = 𝐺 → (∀𝑏 𝑥(𝑎𝑏 → ∃!𝑙𝑥 (𝑎𝑙𝑏𝑙)) ↔ ∀𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙))))
73, 6raleqbidv 3152 . . 3 (𝑥 = 𝐺 → (∀𝑎 𝑥𝑏 𝑥(𝑎𝑏 → ∃!𝑙𝑥 (𝑎𝑙𝑏𝑙)) ↔ ∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙))))
83rexeqdv 3145 . . . . 5 (𝑥 = 𝐺 → (∃𝑏 𝑥(𝑎𝑏𝑎𝑙𝑏𝑙) ↔ ∃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙)))
93, 8rexeqbidv 3153 . . . 4 (𝑥 = 𝐺 → (∃𝑎 𝑥𝑏 𝑥(𝑎𝑏𝑎𝑙𝑏𝑙) ↔ ∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙)))
109raleqbi1dv 3146 . . 3 (𝑥 = 𝐺 → (∀𝑙𝑥𝑎 𝑥𝑏 𝑥(𝑎𝑏𝑎𝑙𝑏𝑙) ↔ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙)))
11 raleq 3138 . . . . . 6 (𝑥 = 𝐺 → (∀𝑙𝑥 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙) ↔ ∀𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)))
123, 11rexeqbidv 3153 . . . . 5 (𝑥 = 𝐺 → (∃𝑐 𝑥𝑙𝑥 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙) ↔ ∃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)))
133, 12rexeqbidv 3153 . . . 4 (𝑥 = 𝐺 → (∃𝑏 𝑥𝑐 𝑥𝑙𝑥 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙) ↔ ∃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)))
143, 13rexeqbidv 3153 . . 3 (𝑥 = 𝐺 → (∃𝑎 𝑥𝑏 𝑥𝑐 𝑥𝑙𝑥 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙) ↔ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)))
157, 10, 143anbi123d 1399 . 2 (𝑥 = 𝐺 → ((∀𝑎 𝑥𝑏 𝑥(𝑎𝑏 → ∃!𝑙𝑥 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝑥𝑎 𝑥𝑏 𝑥(𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎 𝑥𝑏 𝑥𝑐 𝑥𝑙𝑥 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)) ↔ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
16 df-plig 27327 . 2 Plig = {𝑥 ∣ (∀𝑎 𝑥𝑏 𝑥(𝑎𝑏 → ∃!𝑙𝑥 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝑥𝑎 𝑥𝑏 𝑥(𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎 𝑥𝑏 𝑥𝑐 𝑥𝑙𝑥 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))}
1715, 16elab2g 3353 1 (𝐺𝐴 → (𝐺 ∈ Plig ↔ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  ∃!wreu 2914   cuni 4436  Pligcplig 27326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-v 3202  df-uni 4437  df-plig 27327
This theorem is referenced by:  ispligb  27329  tncp  27330  l2p  27331  eulplig  27337
  Copyright terms: Public domain W3C validator