| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eulplig | Structured version Visualization version Unicode version | ||
| Description: Through two distinct points of a planar incidence geometry, there is a unique line. (Contributed by BJ, 2-Dec-2021.) |
| Ref | Expression |
|---|---|
| eulplig.1 |
|
| Ref | Expression |
|---|---|
| eulplig |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulplig.1 |
. . . . 5
| |
| 2 | 1 | isplig 27328 |
. . . 4
|
| 3 | 2 | ibi 256 |
. . 3
|
| 4 | simp1 1061 |
. . 3
| |
| 5 | simpl 473 |
. . . . . . . . 9
| |
| 6 | simpr 477 |
. . . . . . . . 9
| |
| 7 | 5, 6 | neeq12d 2855 |
. . . . . . . 8
|
| 8 | eleq1 2689 |
. . . . . . . . . 10
| |
| 9 | eleq1 2689 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | bi2anan9 917 |
. . . . . . . . 9
|
| 11 | 10 | reubidv 3126 |
. . . . . . . 8
|
| 12 | 7, 11 | imbi12d 334 |
. . . . . . 7
|
| 13 | 12 | rspc2gv 3321 |
. . . . . 6
|
| 14 | 13 | com23 86 |
. . . . 5
|
| 15 | 14 | imp 445 |
. . . 4
|
| 16 | 15 | com12 32 |
. . 3
|
| 17 | 3, 4, 16 | 3syl 18 |
. 2
|
| 18 | 17 | imp 445 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-v 3202 df-uni 4437 df-plig 27327 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |