| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exsimpr | Structured version Visualization version GIF version | ||
| Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| exsimpr | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 477 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 2 | 1 | eximi 1762 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: 19.40 1797 spsbe 1884 rexex 3002 ceqsexv2d 3243 imassrn 5477 fv3 6206 finacn 8873 dfac4 8945 kmlem2 8973 ac6c5 9304 ac6s3 9309 ac6s5 9313 bj-finsumval0 33147 mptsnunlem 33185 topdifinffinlem 33195 heiborlem3 33612 ac6s3f 33979 motr 34127 |
| Copyright terms: Public domain | W3C validator |