MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6c5 Structured version   Visualization version   GIF version

Theorem ac6c5 9304
Description: Equivalent of Axiom of Choice. 𝐵 is a collection 𝐵(𝑥) of nonempty sets. Remark after Theorem 10.46 of [TakeutiZaring] p. 98. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypotheses
Ref Expression
ac6c4.1 𝐴 ∈ V
ac6c4.2 𝐵 ∈ V
Assertion
Ref Expression
ac6c5 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
Distinct variable groups:   𝐴,𝑓,𝑥   𝐵,𝑓
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ac6c5
StepHypRef Expression
1 ac6c4.1 . . 3 𝐴 ∈ V
2 ac6c4.2 . . 3 𝐵 ∈ V
31, 2ac6c4 9303 . 2 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
4 exsimpr 1796 . 2 (∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
53, 4syl 17 1 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wex 1704  wcel 1990  wne 2794  wral 2912  Vcvv 3200  c0 3915   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-wrecs 7407  df-recs 7468  df-en 7956  df-card 8765  df-ac 8939
This theorem is referenced by:  konigthlem  9390
  Copyright terms: Public domain W3C validator