Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptsnunlem Structured version   Visualization version   GIF version

Theorem mptsnunlem 33185
Description: This is the core of the proof of mptsnun 33186, but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 16-Jul-2020.)
Hypotheses
Ref Expression
mptsnun.f 𝐹 = (𝑥𝐴 ↦ {𝑥})
mptsnun.r 𝑅 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Assertion
Ref Expression
mptsnunlem (𝐵𝐴𝐵 = (𝐹𝐵))
Distinct variable groups:   𝑢,𝐴,𝑥   𝑢,𝐵,𝑥   𝑥,𝐹
Allowed substitution hints:   𝑅(𝑥,𝑢)   𝐹(𝑢)

Proof of Theorem mptsnunlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ima 5127 . . . . . . 7 (𝐹𝐵) = ran (𝐹𝐵)
2 mptsnun.f . . . . . . . . . . 11 𝐹 = (𝑥𝐴 ↦ {𝑥})
32reseq1i 5392 . . . . . . . . . 10 (𝐹𝐵) = ((𝑥𝐴 ↦ {𝑥}) ↾ 𝐵)
4 resmpt 5449 . . . . . . . . . 10 (𝐵𝐴 → ((𝑥𝐴 ↦ {𝑥}) ↾ 𝐵) = (𝑥𝐵 ↦ {𝑥}))
53, 4syl5eq 2668 . . . . . . . . 9 (𝐵𝐴 → (𝐹𝐵) = (𝑥𝐵 ↦ {𝑥}))
65rneqd 5353 . . . . . . . 8 (𝐵𝐴 → ran (𝐹𝐵) = ran (𝑥𝐵 ↦ {𝑥}))
7 rnmptsn 33182 . . . . . . . 8 ran (𝑥𝐵 ↦ {𝑥}) = {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}
86, 7syl6eq 2672 . . . . . . 7 (𝐵𝐴 → ran (𝐹𝐵) = {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}})
91, 8syl5eq 2668 . . . . . 6 (𝐵𝐴 → (𝐹𝐵) = {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}})
109unieqd 4446 . . . . 5 (𝐵𝐴 (𝐹𝐵) = {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}})
1110eleq2d 2687 . . . 4 (𝐵𝐴 → (𝑥 (𝐹𝐵) ↔ 𝑥 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))
12 eleq1 2689 . . . . . 6 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
13 eluniab 4447 . . . . . . . . 9 (𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}} ↔ ∃𝑢(𝑧𝑢 ∧ ∃𝑥𝐵 𝑢 = {𝑥}))
14 ancom 466 . . . . . . . . . . . . 13 ((𝑧𝑢 ∧ ∃𝑥𝐵 𝑢 = {𝑥}) ↔ (∃𝑥𝐵 𝑢 = {𝑥} ∧ 𝑧𝑢))
15 r19.41v 3089 . . . . . . . . . . . . 13 (∃𝑥𝐵 (𝑢 = {𝑥} ∧ 𝑧𝑢) ↔ (∃𝑥𝐵 𝑢 = {𝑥} ∧ 𝑧𝑢))
16 df-rex 2918 . . . . . . . . . . . . 13 (∃𝑥𝐵 (𝑢 = {𝑥} ∧ 𝑧𝑢) ↔ ∃𝑥(𝑥𝐵 ∧ (𝑢 = {𝑥} ∧ 𝑧𝑢)))
1714, 15, 163bitr2i 288 . . . . . . . . . . . 12 ((𝑧𝑢 ∧ ∃𝑥𝐵 𝑢 = {𝑥}) ↔ ∃𝑥(𝑥𝐵 ∧ (𝑢 = {𝑥} ∧ 𝑧𝑢)))
18 eleq2 2690 . . . . . . . . . . . . . . . . 17 (𝑢 = {𝑥} → (𝑧𝑢𝑧 ∈ {𝑥}))
1918anbi2d 740 . . . . . . . . . . . . . . . 16 (𝑢 = {𝑥} → ((𝑢 = {𝑥} ∧ 𝑧𝑢) ↔ (𝑢 = {𝑥} ∧ 𝑧 ∈ {𝑥})))
2019adantr 481 . . . . . . . . . . . . . . 15 ((𝑢 = {𝑥} ∧ 𝑧𝑢) → ((𝑢 = {𝑥} ∧ 𝑧𝑢) ↔ (𝑢 = {𝑥} ∧ 𝑧 ∈ {𝑥})))
2120ibi 256 . . . . . . . . . . . . . 14 ((𝑢 = {𝑥} ∧ 𝑧𝑢) → (𝑢 = {𝑥} ∧ 𝑧 ∈ {𝑥}))
2221anim2i 593 . . . . . . . . . . . . 13 ((𝑥𝐵 ∧ (𝑢 = {𝑥} ∧ 𝑧𝑢)) → (𝑥𝐵 ∧ (𝑢 = {𝑥} ∧ 𝑧 ∈ {𝑥})))
2322eximi 1762 . . . . . . . . . . . 12 (∃𝑥(𝑥𝐵 ∧ (𝑢 = {𝑥} ∧ 𝑧𝑢)) → ∃𝑥(𝑥𝐵 ∧ (𝑢 = {𝑥} ∧ 𝑧 ∈ {𝑥})))
2417, 23sylbi 207 . . . . . . . . . . 11 ((𝑧𝑢 ∧ ∃𝑥𝐵 𝑢 = {𝑥}) → ∃𝑥(𝑥𝐵 ∧ (𝑢 = {𝑥} ∧ 𝑧 ∈ {𝑥})))
25 an12 838 . . . . . . . . . . . . 13 ((𝑥𝐵 ∧ (𝑢 = {𝑥} ∧ 𝑧 ∈ {𝑥})) ↔ (𝑢 = {𝑥} ∧ (𝑥𝐵𝑧 ∈ {𝑥})))
2625exbii 1774 . . . . . . . . . . . 12 (∃𝑥(𝑥𝐵 ∧ (𝑢 = {𝑥} ∧ 𝑧 ∈ {𝑥})) ↔ ∃𝑥(𝑢 = {𝑥} ∧ (𝑥𝐵𝑧 ∈ {𝑥})))
27 exsimpr 1796 . . . . . . . . . . . 12 (∃𝑥(𝑢 = {𝑥} ∧ (𝑥𝐵𝑧 ∈ {𝑥})) → ∃𝑥(𝑥𝐵𝑧 ∈ {𝑥}))
2826, 27sylbi 207 . . . . . . . . . . 11 (∃𝑥(𝑥𝐵 ∧ (𝑢 = {𝑥} ∧ 𝑧 ∈ {𝑥})) → ∃𝑥(𝑥𝐵𝑧 ∈ {𝑥}))
2924, 28syl 17 . . . . . . . . . 10 ((𝑧𝑢 ∧ ∃𝑥𝐵 𝑢 = {𝑥}) → ∃𝑥(𝑥𝐵𝑧 ∈ {𝑥}))
3029exlimiv 1858 . . . . . . . . 9 (∃𝑢(𝑧𝑢 ∧ ∃𝑥𝐵 𝑢 = {𝑥}) → ∃𝑥(𝑥𝐵𝑧 ∈ {𝑥}))
3113, 30sylbi 207 . . . . . . . 8 (𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}} → ∃𝑥(𝑥𝐵𝑧 ∈ {𝑥}))
32 velsn 4193 . . . . . . . . . 10 (𝑧 ∈ {𝑥} ↔ 𝑧 = 𝑥)
3332anbi2i 730 . . . . . . . . 9 ((𝑥𝐵𝑧 ∈ {𝑥}) ↔ (𝑥𝐵𝑧 = 𝑥))
3433exbii 1774 . . . . . . . 8 (∃𝑥(𝑥𝐵𝑧 ∈ {𝑥}) ↔ ∃𝑥(𝑥𝐵𝑧 = 𝑥))
3531, 34sylib 208 . . . . . . 7 (𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}} → ∃𝑥(𝑥𝐵𝑧 = 𝑥))
3612biimparc 504 . . . . . . . 8 ((𝑥𝐵𝑧 = 𝑥) → 𝑧𝐵)
3736exlimiv 1858 . . . . . . 7 (∃𝑥(𝑥𝐵𝑧 = 𝑥) → 𝑧𝐵)
3835, 37syl 17 . . . . . 6 (𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}} → 𝑧𝐵)
3912, 38vtoclga 3272 . . . . 5 (𝑥 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}} → 𝑥𝐵)
40 equid 1939 . . . . . 6 𝑥 = 𝑥
41 eqid 2622 . . . . . . . . . . . 12 {𝑥} = {𝑥}
42 snex 4908 . . . . . . . . . . . . . 14 {𝑥} ∈ V
43 sbcg 3503 . . . . . . . . . . . . . 14 ({𝑥} ∈ V → ([{𝑥} / 𝑢]𝑥𝐵𝑥𝐵))
4442, 43ax-mp 5 . . . . . . . . . . . . 13 ([{𝑥} / 𝑢]𝑥𝐵𝑥𝐵)
45 eqsbc3 3475 . . . . . . . . . . . . . 14 ({𝑥} ∈ V → ([{𝑥} / 𝑢]𝑢 = {𝑥} ↔ {𝑥} = {𝑥}))
4642, 45ax-mp 5 . . . . . . . . . . . . 13 ([{𝑥} / 𝑢]𝑢 = {𝑥} ↔ {𝑥} = {𝑥})
4718adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵𝑢 = {𝑥}) → (𝑧𝑢𝑧 ∈ {𝑥}))
48 df-rex 2918 . . . . . . . . . . . . . . . . . . . 20 (∃𝑥𝐵 𝑢 = {𝑥} ↔ ∃𝑥(𝑥𝐵𝑢 = {𝑥}))
4913biimpri 218 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑢(𝑧𝑢 ∧ ∃𝑥𝐵 𝑢 = {𝑥}) → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}})
504919.23bi 2061 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧𝑢 ∧ ∃𝑥𝐵 𝑢 = {𝑥}) → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}})
5150expcom 451 . . . . . . . . . . . . . . . . . . . 20 (∃𝑥𝐵 𝑢 = {𝑥} → (𝑧𝑢𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))
5248, 51sylbir 225 . . . . . . . . . . . . . . . . . . 19 (∃𝑥(𝑥𝐵𝑢 = {𝑥}) → (𝑧𝑢𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))
535219.23bi 2061 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵𝑢 = {𝑥}) → (𝑧𝑢𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))
5447, 53sylbird 250 . . . . . . . . . . . . . . . . 17 ((𝑥𝐵𝑢 = {𝑥}) → (𝑧 ∈ {𝑥} → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))
5554sbcth 3450 . . . . . . . . . . . . . . . 16 ({𝑥} ∈ V → [{𝑥} / 𝑢]((𝑥𝐵𝑢 = {𝑥}) → (𝑧 ∈ {𝑥} → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}})))
5642, 55ax-mp 5 . . . . . . . . . . . . . . 15 [{𝑥} / 𝑢]((𝑥𝐵𝑢 = {𝑥}) → (𝑧 ∈ {𝑥} → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))
57 sbcimg 3477 . . . . . . . . . . . . . . . 16 ({𝑥} ∈ V → ([{𝑥} / 𝑢]((𝑥𝐵𝑢 = {𝑥}) → (𝑧 ∈ {𝑥} → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}})) ↔ ([{𝑥} / 𝑢](𝑥𝐵𝑢 = {𝑥}) → [{𝑥} / 𝑢](𝑧 ∈ {𝑥} → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))))
5842, 57ax-mp 5 . . . . . . . . . . . . . . 15 ([{𝑥} / 𝑢]((𝑥𝐵𝑢 = {𝑥}) → (𝑧 ∈ {𝑥} → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}})) ↔ ([{𝑥} / 𝑢](𝑥𝐵𝑢 = {𝑥}) → [{𝑥} / 𝑢](𝑧 ∈ {𝑥} → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}})))
5956, 58mpbi 220 . . . . . . . . . . . . . 14 ([{𝑥} / 𝑢](𝑥𝐵𝑢 = {𝑥}) → [{𝑥} / 𝑢](𝑧 ∈ {𝑥} → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))
60 sbcan 3478 . . . . . . . . . . . . . 14 ([{𝑥} / 𝑢](𝑥𝐵𝑢 = {𝑥}) ↔ ([{𝑥} / 𝑢]𝑥𝐵[{𝑥} / 𝑢]𝑢 = {𝑥}))
61 nfv 1843 . . . . . . . . . . . . . . . 16 𝑢 𝑧 ∈ {𝑥}
62 nfab1 2766 . . . . . . . . . . . . . . . . . 18 𝑢{𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}
6362nfuni 4442 . . . . . . . . . . . . . . . . 17 𝑢 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}
6463nfcri 2758 . . . . . . . . . . . . . . . 16 𝑢 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}
6561, 64nfim 1825 . . . . . . . . . . . . . . 15 𝑢(𝑧 ∈ {𝑥} → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}})
66 sbctt 3500 . . . . . . . . . . . . . . 15 (({𝑥} ∈ V ∧ Ⅎ𝑢(𝑧 ∈ {𝑥} → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}})) → ([{𝑥} / 𝑢](𝑧 ∈ {𝑥} → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}) ↔ (𝑧 ∈ {𝑥} → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}})))
6742, 65, 66mp2an 708 . . . . . . . . . . . . . 14 ([{𝑥} / 𝑢](𝑧 ∈ {𝑥} → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}) ↔ (𝑧 ∈ {𝑥} → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))
6859, 60, 673imtr3i 280 . . . . . . . . . . . . 13 (([{𝑥} / 𝑢]𝑥𝐵[{𝑥} / 𝑢]𝑢 = {𝑥}) → (𝑧 ∈ {𝑥} → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))
6944, 46, 68syl2anbr 497 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ {𝑥} = {𝑥}) → (𝑧 ∈ {𝑥} → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))
7041, 69mpan2 707 . . . . . . . . . . 11 (𝑥𝐵 → (𝑧 ∈ {𝑥} → 𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))
7132, 70syl5bir 233 . . . . . . . . . 10 (𝑥𝐵 → (𝑧 = 𝑥𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))
72 eleq1 2689 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}} ↔ 𝑥 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))
7371, 72mpbidi 231 . . . . . . . . 9 (𝑥𝐵 → (𝑧 = 𝑥𝑥 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))
7473com12 32 . . . . . . . 8 (𝑧 = 𝑥 → (𝑥𝐵𝑥 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))
7574sbimi 1886 . . . . . . 7 ([𝑥 / 𝑧]𝑧 = 𝑥 → [𝑥 / 𝑧](𝑥𝐵𝑥 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))
76 equsb3 2432 . . . . . . 7 ([𝑥 / 𝑧]𝑧 = 𝑥𝑥 = 𝑥)
77 nfv 1843 . . . . . . . 8 𝑧(𝑥𝐵𝑥 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}})
7877sbf 2380 . . . . . . 7 ([𝑥 / 𝑧](𝑥𝐵𝑥 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}) ↔ (𝑥𝐵𝑥 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))
7975, 76, 783imtr3i 280 . . . . . 6 (𝑥 = 𝑥 → (𝑥𝐵𝑥 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}}))
8040, 79ax-mp 5 . . . . 5 (𝑥𝐵𝑥 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}})
8139, 80impbii 199 . . . 4 (𝑥 {𝑢 ∣ ∃𝑥𝐵 𝑢 = {𝑥}} ↔ 𝑥𝐵)
8211, 81syl6bb 276 . . 3 (𝐵𝐴 → (𝑥 (𝐹𝐵) ↔ 𝑥𝐵))
8382eqrdv 2620 . 2 (𝐵𝐴 (𝐹𝐵) = 𝐵)
8483eqcomd 2628 1 (𝐵𝐴𝐵 = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wnf 1708  [wsb 1880  wcel 1990  {cab 2608  wrex 2913  Vcvv 3200  [wsbc 3435  wss 3574  {csn 4177   cuni 4436  cmpt 4729  ran crn 5115  cres 5116  cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  mptsnun  33186
  Copyright terms: Public domain W3C validator