MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralnralall Structured version   Visualization version   GIF version

Theorem ralnralall 4080
Description: A contradiction concerning restricted generalization for a nonempty set implies anything. (Contributed by Alexander van der Vekens, 4-Sep-2018.)
Assertion
Ref Expression
ralnralall (𝐴 ≠ ∅ → ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 ¬ 𝜑) → 𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem ralnralall
StepHypRef Expression
1 r19.26 3064 . 2 (∀𝑥𝐴 (𝜑 ∧ ¬ 𝜑) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 ¬ 𝜑))
2 pm3.24 926 . . . . 5 ¬ (𝜑 ∧ ¬ 𝜑)
32bifal 1497 . . . 4 ((𝜑 ∧ ¬ 𝜑) ↔ ⊥)
43ralbii 2980 . . 3 (∀𝑥𝐴 (𝜑 ∧ ¬ 𝜑) ↔ ∀𝑥𝐴 ⊥)
5 r19.3rzv 4064 . . . 4 (𝐴 ≠ ∅ → (⊥ ↔ ∀𝑥𝐴 ⊥))
6 falim 1498 . . . 4 (⊥ → 𝜓)
75, 6syl6bir 244 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 ⊥ → 𝜓))
84, 7syl5bi 232 . 2 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑 ∧ ¬ 𝜑) → 𝜓))
91, 8syl5bir 233 1 (𝐴 ≠ ∅ → ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 ¬ 𝜑) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wfal 1488  wne 2794  wral 2912  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator