| Step | Hyp | Ref
| Expression |
| 1 | | velsn 4193 |
. . . . 5
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
| 2 | 1 | bicomi 214 |
. . . 4
⊢ (𝑥 = 𝐴 ↔ 𝑥 ∈ {𝐴}) |
| 3 | 2 | anbi1i 731 |
. . 3
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 = 𝐵)) |
| 4 | 3 | opabbii 4717 |
. 2
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝐴} ∧ 𝑦 = 𝐵)} |
| 5 | | velsn 4193 |
. . . . 5
⊢ (𝑝 ∈ {〈𝐴, 𝐶〉} ↔ 𝑝 = 〈𝐴, 𝐶〉) |
| 6 | | eqidd 2623 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 = 𝐴) |
| 7 | | eqidd 2623 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 = 𝐶) |
| 8 | | sbcan 3478 |
. . . . . . . . . . 11
⊢
([𝐶 / 𝑦](𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ ([𝐶 / 𝑦]𝑥 = 𝐴 ∧ [𝐶 / 𝑦]𝑦 = 𝐵)) |
| 9 | | fmptsnd.3 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| 10 | | sbcg 3503 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ 𝑊 → ([𝐶 / 𝑦]𝑥 = 𝐴 ↔ 𝑥 = 𝐴)) |
| 11 | 9, 10 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ([𝐶 / 𝑦]𝑥 = 𝐴 ↔ 𝑥 = 𝐴)) |
| 12 | | eqsbc3 3475 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ 𝑊 → ([𝐶 / 𝑦]𝑦 = 𝐵 ↔ 𝐶 = 𝐵)) |
| 13 | 9, 12 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ([𝐶 / 𝑦]𝑦 = 𝐵 ↔ 𝐶 = 𝐵)) |
| 14 | 11, 13 | anbi12d 747 |
. . . . . . . . . . 11
⊢ (𝜑 → (([𝐶 / 𝑦]𝑥 = 𝐴 ∧ [𝐶 / 𝑦]𝑦 = 𝐵) ↔ (𝑥 = 𝐴 ∧ 𝐶 = 𝐵))) |
| 15 | 8, 14 | syl5bb 272 |
. . . . . . . . . 10
⊢ (𝜑 → ([𝐶 / 𝑦](𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 = 𝐴 ∧ 𝐶 = 𝐵))) |
| 16 | 15 | sbcbidv 3490 |
. . . . . . . . 9
⊢ (𝜑 → ([𝐴 / 𝑥][𝐶 / 𝑦](𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ [𝐴 / 𝑥](𝑥 = 𝐴 ∧ 𝐶 = 𝐵))) |
| 17 | | fmptsnd.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 18 | | eqeq1 2626 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → (𝑥 = 𝐴 ↔ 𝐴 = 𝐴)) |
| 19 | 18 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑥 = 𝐴 ↔ 𝐴 = 𝐴)) |
| 20 | | fmptsnd.1 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
| 21 | 20 | eqeq2d 2632 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐶 = 𝐵 ↔ 𝐶 = 𝐶)) |
| 22 | 19, 21 | anbi12d 747 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑥 = 𝐴 ∧ 𝐶 = 𝐵) ↔ (𝐴 = 𝐴 ∧ 𝐶 = 𝐶))) |
| 23 | 17, 22 | sbcied 3472 |
. . . . . . . . 9
⊢ (𝜑 → ([𝐴 / 𝑥](𝑥 = 𝐴 ∧ 𝐶 = 𝐵) ↔ (𝐴 = 𝐴 ∧ 𝐶 = 𝐶))) |
| 24 | 16, 23 | bitrd 268 |
. . . . . . . 8
⊢ (𝜑 → ([𝐴 / 𝑥][𝐶 / 𝑦](𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝐴 = 𝐴 ∧ 𝐶 = 𝐶))) |
| 25 | 6, 7, 24 | mpbir2and 957 |
. . . . . . 7
⊢ (𝜑 → [𝐴 / 𝑥][𝐶 / 𝑦](𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
| 26 | | opelopabsb 4985 |
. . . . . . 7
⊢
(〈𝐴, 𝐶〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)} ↔ [𝐴 / 𝑥][𝐶 / 𝑦](𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
| 27 | 25, 26 | sylibr 224 |
. . . . . 6
⊢ (𝜑 → 〈𝐴, 𝐶〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)}) |
| 28 | | eleq1 2689 |
. . . . . 6
⊢ (𝑝 = 〈𝐴, 𝐶〉 → (𝑝 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)} ↔ 〈𝐴, 𝐶〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)})) |
| 29 | 27, 28 | syl5ibrcom 237 |
. . . . 5
⊢ (𝜑 → (𝑝 = 〈𝐴, 𝐶〉 → 𝑝 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)})) |
| 30 | 5, 29 | syl5bi 232 |
. . . 4
⊢ (𝜑 → (𝑝 ∈ {〈𝐴, 𝐶〉} → 𝑝 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)})) |
| 31 | | elopab 4983 |
. . . . 5
⊢ (𝑝 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)} ↔ ∃𝑥∃𝑦(𝑝 = 〈𝑥, 𝑦〉 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵))) |
| 32 | | opeq12 4404 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
| 33 | 32 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
| 34 | 33 | eqeq2d 2632 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝑝 = 〈𝑥, 𝑦〉 ↔ 𝑝 = 〈𝐴, 𝐵〉)) |
| 35 | 20 | adantrr 753 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝐵 = 𝐶) |
| 36 | 35 | opeq2d 4409 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 〈𝐴, 𝐵〉 = 〈𝐴, 𝐶〉) |
| 37 | | opex 4932 |
. . . . . . . . . . . . 13
⊢
〈𝐴, 𝐶〉 ∈ V |
| 38 | 37 | snid 4208 |
. . . . . . . . . . . 12
⊢
〈𝐴, 𝐶〉 ∈ {〈𝐴, 𝐶〉} |
| 39 | 36, 38 | syl6eqel 2709 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐶〉}) |
| 40 | | eleq1 2689 |
. . . . . . . . . . 11
⊢ (𝑝 = 〈𝐴, 𝐵〉 → (𝑝 ∈ {〈𝐴, 𝐶〉} ↔ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐶〉})) |
| 41 | 39, 40 | syl5ibrcom 237 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝑝 = 〈𝐴, 𝐵〉 → 𝑝 ∈ {〈𝐴, 𝐶〉})) |
| 42 | 34, 41 | sylbid 230 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝑝 = 〈𝑥, 𝑦〉 → 𝑝 ∈ {〈𝐴, 𝐶〉})) |
| 43 | 42 | ex 450 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑝 = 〈𝑥, 𝑦〉 → 𝑝 ∈ {〈𝐴, 𝐶〉}))) |
| 44 | 43 | com23 86 |
. . . . . . 7
⊢ (𝜑 → (𝑝 = 〈𝑥, 𝑦〉 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑝 ∈ {〈𝐴, 𝐶〉}))) |
| 45 | 44 | impd 447 |
. . . . . 6
⊢ (𝜑 → ((𝑝 = 〈𝑥, 𝑦〉 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑝 ∈ {〈𝐴, 𝐶〉})) |
| 46 | 45 | exlimdvv 1862 |
. . . . 5
⊢ (𝜑 → (∃𝑥∃𝑦(𝑝 = 〈𝑥, 𝑦〉 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑝 ∈ {〈𝐴, 𝐶〉})) |
| 47 | 31, 46 | syl5bi 232 |
. . . 4
⊢ (𝜑 → (𝑝 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)} → 𝑝 ∈ {〈𝐴, 𝐶〉})) |
| 48 | 30, 47 | impbid 202 |
. . 3
⊢ (𝜑 → (𝑝 ∈ {〈𝐴, 𝐶〉} ↔ 𝑝 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)})) |
| 49 | 48 | eqrdv 2620 |
. 2
⊢ (𝜑 → {〈𝐴, 𝐶〉} = {〈𝑥, 𝑦〉 ∣ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)}) |
| 50 | | df-mpt 4730 |
. . 3
⊢ (𝑥 ∈ {𝐴} ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝐴} ∧ 𝑦 = 𝐵)} |
| 51 | 50 | a1i 11 |
. 2
⊢ (𝜑 → (𝑥 ∈ {𝐴} ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝐴} ∧ 𝑦 = 𝐵)}) |
| 52 | 4, 49, 51 | 3eqtr4a 2682 |
1
⊢ (𝜑 → {〈𝐴, 𝐶〉} = (𝑥 ∈ {𝐴} ↦ 𝐵)) |