MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptsnd Structured version   Visualization version   GIF version

Theorem fmptsnd 6435
Description: Express a singleton function in maps-to notation. Deduction form of fmptsng 6434. (Contributed by AV, 4-Aug-2019.)
Hypotheses
Ref Expression
fmptsnd.1 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
fmptsnd.2 (𝜑𝐴𝑉)
fmptsnd.3 (𝜑𝐶𝑊)
Assertion
Ref Expression
fmptsnd (𝜑 → {⟨𝐴, 𝐶⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem fmptsnd
Dummy variables 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 velsn 4193 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
21bicomi 214 . . . 4 (𝑥 = 𝐴𝑥 ∈ {𝐴})
32anbi1i 731 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 = 𝐵))
43opabbii 4717 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝐴} ∧ 𝑦 = 𝐵)}
5 velsn 4193 . . . . 5 (𝑝 ∈ {⟨𝐴, 𝐶⟩} ↔ 𝑝 = ⟨𝐴, 𝐶⟩)
6 eqidd 2623 . . . . . . . 8 (𝜑𝐴 = 𝐴)
7 eqidd 2623 . . . . . . . 8 (𝜑𝐶 = 𝐶)
8 sbcan 3478 . . . . . . . . . . 11 ([𝐶 / 𝑦](𝑥 = 𝐴𝑦 = 𝐵) ↔ ([𝐶 / 𝑦]𝑥 = 𝐴[𝐶 / 𝑦]𝑦 = 𝐵))
9 fmptsnd.3 . . . . . . . . . . . . 13 (𝜑𝐶𝑊)
10 sbcg 3503 . . . . . . . . . . . . 13 (𝐶𝑊 → ([𝐶 / 𝑦]𝑥 = 𝐴𝑥 = 𝐴))
119, 10syl 17 . . . . . . . . . . . 12 (𝜑 → ([𝐶 / 𝑦]𝑥 = 𝐴𝑥 = 𝐴))
12 eqsbc3 3475 . . . . . . . . . . . . 13 (𝐶𝑊 → ([𝐶 / 𝑦]𝑦 = 𝐵𝐶 = 𝐵))
139, 12syl 17 . . . . . . . . . . . 12 (𝜑 → ([𝐶 / 𝑦]𝑦 = 𝐵𝐶 = 𝐵))
1411, 13anbi12d 747 . . . . . . . . . . 11 (𝜑 → (([𝐶 / 𝑦]𝑥 = 𝐴[𝐶 / 𝑦]𝑦 = 𝐵) ↔ (𝑥 = 𝐴𝐶 = 𝐵)))
158, 14syl5bb 272 . . . . . . . . . 10 (𝜑 → ([𝐶 / 𝑦](𝑥 = 𝐴𝑦 = 𝐵) ↔ (𝑥 = 𝐴𝐶 = 𝐵)))
1615sbcbidv 3490 . . . . . . . . 9 (𝜑 → ([𝐴 / 𝑥][𝐶 / 𝑦](𝑥 = 𝐴𝑦 = 𝐵) ↔ [𝐴 / 𝑥](𝑥 = 𝐴𝐶 = 𝐵)))
17 fmptsnd.2 . . . . . . . . . 10 (𝜑𝐴𝑉)
18 eqeq1 2626 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑥 = 𝐴𝐴 = 𝐴))
1918adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐴) → (𝑥 = 𝐴𝐴 = 𝐴))
20 fmptsnd.1 . . . . . . . . . . . 12 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
2120eqeq2d 2632 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐴) → (𝐶 = 𝐵𝐶 = 𝐶))
2219, 21anbi12d 747 . . . . . . . . . 10 ((𝜑𝑥 = 𝐴) → ((𝑥 = 𝐴𝐶 = 𝐵) ↔ (𝐴 = 𝐴𝐶 = 𝐶)))
2317, 22sbcied 3472 . . . . . . . . 9 (𝜑 → ([𝐴 / 𝑥](𝑥 = 𝐴𝐶 = 𝐵) ↔ (𝐴 = 𝐴𝐶 = 𝐶)))
2416, 23bitrd 268 . . . . . . . 8 (𝜑 → ([𝐴 / 𝑥][𝐶 / 𝑦](𝑥 = 𝐴𝑦 = 𝐵) ↔ (𝐴 = 𝐴𝐶 = 𝐶)))
256, 7, 24mpbir2and 957 . . . . . . 7 (𝜑[𝐴 / 𝑥][𝐶 / 𝑦](𝑥 = 𝐴𝑦 = 𝐵))
26 opelopabsb 4985 . . . . . . 7 (⟨𝐴, 𝐶⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)} ↔ [𝐴 / 𝑥][𝐶 / 𝑦](𝑥 = 𝐴𝑦 = 𝐵))
2725, 26sylibr 224 . . . . . 6 (𝜑 → ⟨𝐴, 𝐶⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)})
28 eleq1 2689 . . . . . 6 (𝑝 = ⟨𝐴, 𝐶⟩ → (𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)} ↔ ⟨𝐴, 𝐶⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)}))
2927, 28syl5ibrcom 237 . . . . 5 (𝜑 → (𝑝 = ⟨𝐴, 𝐶⟩ → 𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)}))
305, 29syl5bi 232 . . . 4 (𝜑 → (𝑝 ∈ {⟨𝐴, 𝐶⟩} → 𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)}))
31 elopab 4983 . . . . 5 (𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)} ↔ ∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 = 𝐴𝑦 = 𝐵)))
32 opeq12 4404 . . . . . . . . . . . 12 ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
3332adantl 482 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
3433eqeq2d 2632 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝑝 = ⟨𝑥, 𝑦⟩ ↔ 𝑝 = ⟨𝐴, 𝐵⟩))
3520adantrr 753 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝐵 = 𝐶)
3635opeq2d 4409 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐶⟩)
37 opex 4932 . . . . . . . . . . . . 13 𝐴, 𝐶⟩ ∈ V
3837snid 4208 . . . . . . . . . . . 12 𝐴, 𝐶⟩ ∈ {⟨𝐴, 𝐶⟩}
3936, 38syl6eqel 2709 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ⟨𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐶⟩})
40 eleq1 2689 . . . . . . . . . . 11 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑝 ∈ {⟨𝐴, 𝐶⟩} ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐶⟩}))
4139, 40syl5ibrcom 237 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝑝 = ⟨𝐴, 𝐵⟩ → 𝑝 ∈ {⟨𝐴, 𝐶⟩}))
4234, 41sylbid 230 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝑝 = ⟨𝑥, 𝑦⟩ → 𝑝 ∈ {⟨𝐴, 𝐶⟩}))
4342ex 450 . . . . . . . 8 (𝜑 → ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑝 = ⟨𝑥, 𝑦⟩ → 𝑝 ∈ {⟨𝐴, 𝐶⟩})))
4443com23 86 . . . . . . 7 (𝜑 → (𝑝 = ⟨𝑥, 𝑦⟩ → ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑝 ∈ {⟨𝐴, 𝐶⟩})))
4544impd 447 . . . . . 6 (𝜑 → ((𝑝 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑝 ∈ {⟨𝐴, 𝐶⟩}))
4645exlimdvv 1862 . . . . 5 (𝜑 → (∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑝 ∈ {⟨𝐴, 𝐶⟩}))
4731, 46syl5bi 232 . . . 4 (𝜑 → (𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)} → 𝑝 ∈ {⟨𝐴, 𝐶⟩}))
4830, 47impbid 202 . . 3 (𝜑 → (𝑝 ∈ {⟨𝐴, 𝐶⟩} ↔ 𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)}))
4948eqrdv 2620 . 2 (𝜑 → {⟨𝐴, 𝐶⟩} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)})
50 df-mpt 4730 . . 3 (𝑥 ∈ {𝐴} ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝐴} ∧ 𝑦 = 𝐵)}
5150a1i 11 . 2 (𝜑 → (𝑥 ∈ {𝐴} ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝐴} ∧ 𝑦 = 𝐵)})
524, 49, 513eqtr4a 2682 1 (𝜑 → {⟨𝐴, 𝐶⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  [wsbc 3435  {csn 4177  cop 4183  {copab 4712  cmpt 4729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-mpt 4730
This theorem is referenced by:  fmptapd  6437  fmptpr  6438  mpt2sn  7268
  Copyright terms: Public domain W3C validator