| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmptsnd | Structured version Visualization version Unicode version | ||
| Description: Express a singleton function in maps-to notation. Deduction form of fmptsng 6434. (Contributed by AV, 4-Aug-2019.) |
| Ref | Expression |
|---|---|
| fmptsnd.1 |
|
| fmptsnd.2 |
|
| fmptsnd.3 |
|
| Ref | Expression |
|---|---|
| fmptsnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn 4193 |
. . . . 5
| |
| 2 | 1 | bicomi 214 |
. . . 4
|
| 3 | 2 | anbi1i 731 |
. . 3
|
| 4 | 3 | opabbii 4717 |
. 2
|
| 5 | velsn 4193 |
. . . . 5
| |
| 6 | eqidd 2623 |
. . . . . . . 8
| |
| 7 | eqidd 2623 |
. . . . . . . 8
| |
| 8 | sbcan 3478 |
. . . . . . . . . . 11
| |
| 9 | fmptsnd.3 |
. . . . . . . . . . . . 13
| |
| 10 | sbcg 3503 |
. . . . . . . . . . . . 13
| |
| 11 | 9, 10 | syl 17 |
. . . . . . . . . . . 12
|
| 12 | eqsbc3 3475 |
. . . . . . . . . . . . 13
| |
| 13 | 9, 12 | syl 17 |
. . . . . . . . . . . 12
|
| 14 | 11, 13 | anbi12d 747 |
. . . . . . . . . . 11
|
| 15 | 8, 14 | syl5bb 272 |
. . . . . . . . . 10
|
| 16 | 15 | sbcbidv 3490 |
. . . . . . . . 9
|
| 17 | fmptsnd.2 |
. . . . . . . . . 10
| |
| 18 | eqeq1 2626 |
. . . . . . . . . . . 12
| |
| 19 | 18 | adantl 482 |
. . . . . . . . . . 11
|
| 20 | fmptsnd.1 |
. . . . . . . . . . . 12
| |
| 21 | 20 | eqeq2d 2632 |
. . . . . . . . . . 11
|
| 22 | 19, 21 | anbi12d 747 |
. . . . . . . . . 10
|
| 23 | 17, 22 | sbcied 3472 |
. . . . . . . . 9
|
| 24 | 16, 23 | bitrd 268 |
. . . . . . . 8
|
| 25 | 6, 7, 24 | mpbir2and 957 |
. . . . . . 7
|
| 26 | opelopabsb 4985 |
. . . . . . 7
| |
| 27 | 25, 26 | sylibr 224 |
. . . . . 6
|
| 28 | eleq1 2689 |
. . . . . 6
| |
| 29 | 27, 28 | syl5ibrcom 237 |
. . . . 5
|
| 30 | 5, 29 | syl5bi 232 |
. . . 4
|
| 31 | elopab 4983 |
. . . . 5
| |
| 32 | opeq12 4404 |
. . . . . . . . . . . 12
| |
| 33 | 32 | adantl 482 |
. . . . . . . . . . 11
|
| 34 | 33 | eqeq2d 2632 |
. . . . . . . . . 10
|
| 35 | 20 | adantrr 753 |
. . . . . . . . . . . . 13
|
| 36 | 35 | opeq2d 4409 |
. . . . . . . . . . . 12
|
| 37 | opex 4932 |
. . . . . . . . . . . . 13
| |
| 38 | 37 | snid 4208 |
. . . . . . . . . . . 12
|
| 39 | 36, 38 | syl6eqel 2709 |
. . . . . . . . . . 11
|
| 40 | eleq1 2689 |
. . . . . . . . . . 11
| |
| 41 | 39, 40 | syl5ibrcom 237 |
. . . . . . . . . 10
|
| 42 | 34, 41 | sylbid 230 |
. . . . . . . . 9
|
| 43 | 42 | ex 450 |
. . . . . . . 8
|
| 44 | 43 | com23 86 |
. . . . . . 7
|
| 45 | 44 | impd 447 |
. . . . . 6
|
| 46 | 45 | exlimdvv 1862 |
. . . . 5
|
| 47 | 31, 46 | syl5bi 232 |
. . . 4
|
| 48 | 30, 47 | impbid 202 |
. . 3
|
| 49 | 48 | eqrdv 2620 |
. 2
|
| 50 | df-mpt 4730 |
. . 3
| |
| 51 | 50 | a1i 11 |
. 2
|
| 52 | 4, 49, 51 | 3eqtr4a 2682 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-mpt 4730 |
| This theorem is referenced by: fmptapd 6437 fmptpr 6438 mpt2sn 7268 |
| Copyright terms: Public domain | W3C validator |