MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptsnd Structured version   Visualization version   Unicode version

Theorem fmptsnd 6435
Description: Express a singleton function in maps-to notation. Deduction form of fmptsng 6434. (Contributed by AV, 4-Aug-2019.)
Hypotheses
Ref Expression
fmptsnd.1  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
fmptsnd.2  |-  ( ph  ->  A  e.  V )
fmptsnd.3  |-  ( ph  ->  C  e.  W )
Assertion
Ref Expression
fmptsnd  |-  ( ph  ->  { <. A ,  C >. }  =  ( x  e.  { A }  |->  B ) )
Distinct variable groups:    x, A    x, C    ph, x
Allowed substitution hints:    B( x)    V( x)    W( x)

Proof of Theorem fmptsnd
Dummy variables  p  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 velsn 4193 . . . . 5  |-  ( x  e.  { A }  <->  x  =  A )
21bicomi 214 . . . 4  |-  ( x  =  A  <->  x  e.  { A } )
32anbi1i 731 . . 3  |-  ( ( x  =  A  /\  y  =  B )  <->  ( x  e.  { A }  /\  y  =  B ) )
43opabbii 4717 . 2  |-  { <. x ,  y >.  |  ( x  =  A  /\  y  =  B ) }  =  { <. x ,  y >.  |  ( x  e.  { A }  /\  y  =  B ) }
5 velsn 4193 . . . . 5  |-  ( p  e.  { <. A ,  C >. }  <->  p  =  <. A ,  C >. )
6 eqidd 2623 . . . . . . . 8  |-  ( ph  ->  A  =  A )
7 eqidd 2623 . . . . . . . 8  |-  ( ph  ->  C  =  C )
8 sbcan 3478 . . . . . . . . . . 11  |-  ( [. C  /  y ]. (
x  =  A  /\  y  =  B )  <->  (
[. C  /  y ]. x  =  A  /\  [. C  /  y ]. y  =  B
) )
9 fmptsnd.3 . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  W )
10 sbcg 3503 . . . . . . . . . . . . 13  |-  ( C  e.  W  ->  ( [. C  /  y ]. x  =  A  <->  x  =  A ) )
119, 10syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( [. C  / 
y ]. x  =  A  <-> 
x  =  A ) )
12 eqsbc3 3475 . . . . . . . . . . . . 13  |-  ( C  e.  W  ->  ( [. C  /  y ]. y  =  B  <->  C  =  B ) )
139, 12syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( [. C  / 
y ]. y  =  B  <-> 
C  =  B ) )
1411, 13anbi12d 747 . . . . . . . . . . 11  |-  ( ph  ->  ( ( [. C  /  y ]. x  =  A  /\  [. C  /  y ]. y  =  B )  <->  ( x  =  A  /\  C  =  B ) ) )
158, 14syl5bb 272 . . . . . . . . . 10  |-  ( ph  ->  ( [. C  / 
y ]. ( x  =  A  /\  y  =  B )  <->  ( x  =  A  /\  C  =  B ) ) )
1615sbcbidv 3490 . . . . . . . . 9  |-  ( ph  ->  ( [. A  /  x ]. [. C  / 
y ]. ( x  =  A  /\  y  =  B )  <->  [. A  /  x ]. ( x  =  A  /\  C  =  B ) ) )
17 fmptsnd.2 . . . . . . . . . 10  |-  ( ph  ->  A  e.  V )
18 eqeq1 2626 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
x  =  A  <->  A  =  A ) )
1918adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  x  =  A )  ->  (
x  =  A  <->  A  =  A ) )
20 fmptsnd.1 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
2120eqeq2d 2632 . . . . . . . . . . 11  |-  ( (
ph  /\  x  =  A )  ->  ( C  =  B  <->  C  =  C ) )
2219, 21anbi12d 747 . . . . . . . . . 10  |-  ( (
ph  /\  x  =  A )  ->  (
( x  =  A  /\  C  =  B )  <->  ( A  =  A  /\  C  =  C ) ) )
2317, 22sbcied 3472 . . . . . . . . 9  |-  ( ph  ->  ( [. A  /  x ]. ( x  =  A  /\  C  =  B )  <->  ( A  =  A  /\  C  =  C ) ) )
2416, 23bitrd 268 . . . . . . . 8  |-  ( ph  ->  ( [. A  /  x ]. [. C  / 
y ]. ( x  =  A  /\  y  =  B )  <->  ( A  =  A  /\  C  =  C ) ) )
256, 7, 24mpbir2and 957 . . . . . . 7  |-  ( ph  ->  [. A  /  x ]. [. C  /  y ]. ( x  =  A  /\  y  =  B ) )
26 opelopabsb 4985 . . . . . . 7  |-  ( <. A ,  C >.  e. 
{ <. x ,  y
>.  |  ( x  =  A  /\  y  =  B ) }  <->  [. A  /  x ]. [. C  / 
y ]. ( x  =  A  /\  y  =  B ) )
2725, 26sylibr 224 . . . . . 6  |-  ( ph  -> 
<. A ,  C >.  e. 
{ <. x ,  y
>.  |  ( x  =  A  /\  y  =  B ) } )
28 eleq1 2689 . . . . . 6  |-  ( p  =  <. A ,  C >.  ->  ( p  e. 
{ <. x ,  y
>.  |  ( x  =  A  /\  y  =  B ) }  <->  <. A ,  C >.  e.  { <. x ,  y >.  |  ( x  =  A  /\  y  =  B ) } ) )
2927, 28syl5ibrcom 237 . . . . 5  |-  ( ph  ->  ( p  =  <. A ,  C >.  ->  p  e.  { <. x ,  y
>.  |  ( x  =  A  /\  y  =  B ) } ) )
305, 29syl5bi 232 . . . 4  |-  ( ph  ->  ( p  e.  { <. A ,  C >. }  ->  p  e.  { <. x ,  y >.  |  ( x  =  A  /\  y  =  B ) } ) )
31 elopab 4983 . . . . 5  |-  ( p  e.  { <. x ,  y >.  |  ( x  =  A  /\  y  =  B ) } 
<->  E. x E. y
( p  =  <. x ,  y >.  /\  (
x  =  A  /\  y  =  B )
) )
32 opeq12 4404 . . . . . . . . . . . 12  |-  ( ( x  =  A  /\  y  =  B )  -> 
<. x ,  y >.  =  <. A ,  B >. )
3332adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  <. x ,  y >.  =  <. A ,  B >. )
3433eqeq2d 2632 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( p  =  <. x ,  y >.  <->  p  =  <. A ,  B >. ) )
3520adantrr 753 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  B  =  C )
3635opeq2d 4409 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  <. A ,  B >.  = 
<. A ,  C >. )
37 opex 4932 . . . . . . . . . . . . 13  |-  <. A ,  C >.  e.  _V
3837snid 4208 . . . . . . . . . . . 12  |-  <. A ,  C >.  e.  { <. A ,  C >. }
3936, 38syl6eqel 2709 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  <. A ,  B >.  e. 
{ <. A ,  C >. } )
40 eleq1 2689 . . . . . . . . . . 11  |-  ( p  =  <. A ,  B >.  ->  ( p  e. 
{ <. A ,  C >. }  <->  <. A ,  B >.  e.  { <. A ,  C >. } ) )
4139, 40syl5ibrcom 237 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( p  =  <. A ,  B >.  ->  p  e.  { <. A ,  C >. } ) )
4234, 41sylbid 230 . . . . . . . . 9  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( p  =  <. x ,  y >.  ->  p  e.  { <. A ,  C >. } ) )
4342ex 450 . . . . . . . 8  |-  ( ph  ->  ( ( x  =  A  /\  y  =  B )  ->  (
p  =  <. x ,  y >.  ->  p  e.  { <. A ,  C >. } ) ) )
4443com23 86 . . . . . . 7  |-  ( ph  ->  ( p  =  <. x ,  y >.  ->  (
( x  =  A  /\  y  =  B )  ->  p  e.  {
<. A ,  C >. } ) ) )
4544impd 447 . . . . . 6  |-  ( ph  ->  ( ( p  = 
<. x ,  y >.  /\  ( x  =  A  /\  y  =  B ) )  ->  p  e.  { <. A ,  C >. } ) )
4645exlimdvv 1862 . . . . 5  |-  ( ph  ->  ( E. x E. y ( p  = 
<. x ,  y >.  /\  ( x  =  A  /\  y  =  B ) )  ->  p  e.  { <. A ,  C >. } ) )
4731, 46syl5bi 232 . . . 4  |-  ( ph  ->  ( p  e.  { <. x ,  y >.  |  ( x  =  A  /\  y  =  B ) }  ->  p  e.  { <. A ,  C >. } ) )
4830, 47impbid 202 . . 3  |-  ( ph  ->  ( p  e.  { <. A ,  C >. }  <-> 
p  e.  { <. x ,  y >.  |  ( x  =  A  /\  y  =  B ) } ) )
4948eqrdv 2620 . 2  |-  ( ph  ->  { <. A ,  C >. }  =  { <. x ,  y >.  |  ( x  =  A  /\  y  =  B ) } )
50 df-mpt 4730 . . 3  |-  ( x  e.  { A }  |->  B )  =  { <. x ,  y >.  |  ( x  e. 
{ A }  /\  y  =  B ) }
5150a1i 11 . 2  |-  ( ph  ->  ( x  e.  { A }  |->  B )  =  { <. x ,  y >.  |  ( x  e.  { A }  /\  y  =  B ) } )
524, 49, 513eqtr4a 2682 1  |-  ( ph  ->  { <. A ,  C >. }  =  ( x  e.  { A }  |->  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   [.wsbc 3435   {csn 4177   <.cop 4183   {copab 4712    |-> cmpt 4729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-mpt 4730
This theorem is referenced by:  fmptapd  6437  fmptpr  6438  mpt2sn  7268
  Copyright terms: Public domain W3C validator