MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmptfvd Structured version   Visualization version   GIF version

Theorem fnmptfvd 6320
Description: A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
fnmptfvd.m (𝜑𝑀 Fn 𝐴)
fnmptfvd.s (𝑖 = 𝑎𝐷 = 𝐶)
fnmptfvd.d ((𝜑𝑖𝐴) → 𝐷𝑈)
fnmptfvd.c ((𝜑𝑎𝐴) → 𝐶𝑉)
Assertion
Ref Expression
fnmptfvd (𝜑 → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = 𝐷))
Distinct variable groups:   𝐴,𝑎,𝑖   𝐶,𝑖   𝐷,𝑎   𝑀,𝑎,𝑖   𝑈,𝑎,𝑖   𝑉,𝑎,𝑖   𝜑,𝑎,𝑖
Allowed substitution hints:   𝐶(𝑎)   𝐷(𝑖)

Proof of Theorem fnmptfvd
StepHypRef Expression
1 fnmptfvd.m . . 3 (𝜑𝑀 Fn 𝐴)
2 fnmptfvd.c . . . . 5 ((𝜑𝑎𝐴) → 𝐶𝑉)
32ralrimiva 2966 . . . 4 (𝜑 → ∀𝑎𝐴 𝐶𝑉)
4 eqid 2622 . . . . 5 (𝑎𝐴𝐶) = (𝑎𝐴𝐶)
54fnmpt 6020 . . . 4 (∀𝑎𝐴 𝐶𝑉 → (𝑎𝐴𝐶) Fn 𝐴)
63, 5syl 17 . . 3 (𝜑 → (𝑎𝐴𝐶) Fn 𝐴)
7 eqfnfv 6311 . . 3 ((𝑀 Fn 𝐴 ∧ (𝑎𝐴𝐶) Fn 𝐴) → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = ((𝑎𝐴𝐶)‘𝑖)))
81, 6, 7syl2anc 693 . 2 (𝜑 → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = ((𝑎𝐴𝐶)‘𝑖)))
9 fnmptfvd.s . . . . . . . 8 (𝑖 = 𝑎𝐷 = 𝐶)
109cbvmptv 4750 . . . . . . 7 (𝑖𝐴𝐷) = (𝑎𝐴𝐶)
1110eqcomi 2631 . . . . . 6 (𝑎𝐴𝐶) = (𝑖𝐴𝐷)
1211a1i 11 . . . . 5 (𝜑 → (𝑎𝐴𝐶) = (𝑖𝐴𝐷))
1312fveq1d 6193 . . . 4 (𝜑 → ((𝑎𝐴𝐶)‘𝑖) = ((𝑖𝐴𝐷)‘𝑖))
1413eqeq2d 2632 . . 3 (𝜑 → ((𝑀𝑖) = ((𝑎𝐴𝐶)‘𝑖) ↔ (𝑀𝑖) = ((𝑖𝐴𝐷)‘𝑖)))
1514ralbidv 2986 . 2 (𝜑 → (∀𝑖𝐴 (𝑀𝑖) = ((𝑎𝐴𝐶)‘𝑖) ↔ ∀𝑖𝐴 (𝑀𝑖) = ((𝑖𝐴𝐷)‘𝑖)))
16 simpr 477 . . . . 5 ((𝜑𝑖𝐴) → 𝑖𝐴)
17 fnmptfvd.d . . . . 5 ((𝜑𝑖𝐴) → 𝐷𝑈)
18 eqid 2622 . . . . . 6 (𝑖𝐴𝐷) = (𝑖𝐴𝐷)
1918fvmpt2 6291 . . . . 5 ((𝑖𝐴𝐷𝑈) → ((𝑖𝐴𝐷)‘𝑖) = 𝐷)
2016, 17, 19syl2anc 693 . . . 4 ((𝜑𝑖𝐴) → ((𝑖𝐴𝐷)‘𝑖) = 𝐷)
2120eqeq2d 2632 . . 3 ((𝜑𝑖𝐴) → ((𝑀𝑖) = ((𝑖𝐴𝐷)‘𝑖) ↔ (𝑀𝑖) = 𝐷))
2221ralbidva 2985 . 2 (𝜑 → (∀𝑖𝐴 (𝑀𝑖) = ((𝑖𝐴𝐷)‘𝑖) ↔ ∀𝑖𝐴 (𝑀𝑖) = 𝐷))
238, 15, 223bitrd 294 1 (𝜑 → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  cmpt 4729   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  cramerlem1  20493  dssmapnvod  38314
  Copyright terms: Public domain W3C validator