MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foun Structured version   Visualization version   GIF version

Theorem foun 6155
Description: The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016.)
Assertion
Ref Expression
foun (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺):(𝐴𝐶)–onto→(𝐵𝐷))

Proof of Theorem foun
StepHypRef Expression
1 fofn 6117 . . . 4 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
2 fofn 6117 . . . 4 (𝐺:𝐶onto𝐷𝐺 Fn 𝐶)
31, 2anim12i 590 . . 3 ((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) → (𝐹 Fn 𝐴𝐺 Fn 𝐶))
4 fnun 5997 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐶) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺) Fn (𝐴𝐶))
53, 4sylan 488 . 2 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺) Fn (𝐴𝐶))
6 rnun 5541 . . 3 ran (𝐹𝐺) = (ran 𝐹 ∪ ran 𝐺)
7 forn 6118 . . . . 5 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
87ad2antrr 762 . . . 4 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → ran 𝐹 = 𝐵)
9 forn 6118 . . . . 5 (𝐺:𝐶onto𝐷 → ran 𝐺 = 𝐷)
109ad2antlr 763 . . . 4 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → ran 𝐺 = 𝐷)
118, 10uneq12d 3768 . . 3 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (ran 𝐹 ∪ ran 𝐺) = (𝐵𝐷))
126, 11syl5eq 2668 . 2 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → ran (𝐹𝐺) = (𝐵𝐷))
13 df-fo 5894 . 2 ((𝐹𝐺):(𝐴𝐶)–onto→(𝐵𝐷) ↔ ((𝐹𝐺) Fn (𝐴𝐶) ∧ ran (𝐹𝐺) = (𝐵𝐷)))
145, 12, 13sylanbrc 698 1 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺):(𝐴𝐶)–onto→(𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  cun 3572  cin 3573  c0 3915  ran crn 5115   Fn wfn 5883  ontowfo 5886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator