![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege120 | Structured version Visualization version GIF version |
Description: Simplified application of one direction of dffrege115 38272. Proposition 120 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege116.x | ⊢ 𝑋 ∈ 𝑈 |
frege118.y | ⊢ 𝑌 ∈ 𝑉 |
frege120.a | ⊢ 𝐴 ∈ 𝑊 |
Ref | Expression |
---|---|
frege120 | ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege120.a | . . . 4 ⊢ 𝐴 ∈ 𝑊 | |
2 | 1 | frege58c 38215 | . . 3 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → [𝐴 / 𝑎](𝑌𝑅𝑎 → 𝑎 = 𝑋)) |
3 | sbcim1 3482 | . . . 4 ⊢ ([𝐴 / 𝑎](𝑌𝑅𝑎 → 𝑎 = 𝑋) → ([𝐴 / 𝑎]𝑌𝑅𝑎 → [𝐴 / 𝑎]𝑎 = 𝑋)) | |
4 | sbcbr2g 4710 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → ([𝐴 / 𝑎]𝑌𝑅𝑎 ↔ 𝑌𝑅⦋𝐴 / 𝑎⦌𝑎)) | |
5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ ([𝐴 / 𝑎]𝑌𝑅𝑎 ↔ 𝑌𝑅⦋𝐴 / 𝑎⦌𝑎) |
6 | csbvarg 4003 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → ⦋𝐴 / 𝑎⦌𝑎 = 𝐴) | |
7 | 1, 6 | ax-mp 5 | . . . . . 6 ⊢ ⦋𝐴 / 𝑎⦌𝑎 = 𝐴 |
8 | 7 | breq2i 4661 | . . . . 5 ⊢ (𝑌𝑅⦋𝐴 / 𝑎⦌𝑎 ↔ 𝑌𝑅𝐴) |
9 | 5, 8 | bitri 264 | . . . 4 ⊢ ([𝐴 / 𝑎]𝑌𝑅𝑎 ↔ 𝑌𝑅𝐴) |
10 | sbceq1g 3988 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → ([𝐴 / 𝑎]𝑎 = 𝑋 ↔ ⦋𝐴 / 𝑎⦌𝑎 = 𝑋)) | |
11 | 1, 10 | ax-mp 5 | . . . . 5 ⊢ ([𝐴 / 𝑎]𝑎 = 𝑋 ↔ ⦋𝐴 / 𝑎⦌𝑎 = 𝑋) |
12 | 7 | eqeq1i 2627 | . . . . 5 ⊢ (⦋𝐴 / 𝑎⦌𝑎 = 𝑋 ↔ 𝐴 = 𝑋) |
13 | 11, 12 | bitri 264 | . . . 4 ⊢ ([𝐴 / 𝑎]𝑎 = 𝑋 ↔ 𝐴 = 𝑋) |
14 | 3, 9, 13 | 3imtr3g 284 | . . 3 ⊢ ([𝐴 / 𝑎](𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) |
15 | 2, 14 | syl 17 | . 2 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) |
16 | frege116.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
17 | frege118.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
18 | 16, 17 | frege119 38276 | . 2 ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋)))) |
19 | 15, 18 | ax-mp 5 | 1 ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 = wceq 1483 ∈ wcel 1990 [wsbc 3435 ⦋csb 3533 class class class wbr 4653 ◡ccnv 5113 Fun wfun 5882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-frege1 38084 ax-frege2 38085 ax-frege8 38103 ax-frege52a 38151 ax-frege58b 38195 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-fun 5890 |
This theorem is referenced by: frege121 38278 |
Copyright terms: Public domain | W3C validator |