![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopreglem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for frgrwopreg 27187: the classes 𝐴 and 𝐵 are sets. The definition of 𝐴 and 𝐵 corresponds to definition 3 in [Huneke] p. 2: "Let A be the set of all vertices of degree k, let B be the set of all vertices of degree different from k, ..." (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.) |
Ref | Expression |
---|---|
frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
Ref | Expression |
---|---|
frgrwopreglem1 | ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrwopreg.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | fvex 6201 | . . 3 ⊢ (Vtx‘𝐺) ∈ V | |
3 | 1, 2 | eqeltri 2697 | . 2 ⊢ 𝑉 ∈ V |
4 | frgrwopreg.a | . . . 4 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
5 | rabexg 4812 | . . . 4 ⊢ (𝑉 ∈ V → {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} ∈ V) | |
6 | 4, 5 | syl5eqel 2705 | . . 3 ⊢ (𝑉 ∈ V → 𝐴 ∈ V) |
7 | frgrwopreg.b | . . . 4 ⊢ 𝐵 = (𝑉 ∖ 𝐴) | |
8 | difexg 4808 | . . . 4 ⊢ (𝑉 ∈ V → (𝑉 ∖ 𝐴) ∈ V) | |
9 | 7, 8 | syl5eqel 2705 | . . 3 ⊢ (𝑉 ∈ V → 𝐵 ∈ V) |
10 | 6, 9 | jca 554 | . 2 ⊢ (𝑉 ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
11 | 3, 10 | ax-mp 5 | 1 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 Vcvv 3200 ∖ cdif 3571 ‘cfv 5888 Vtxcvtx 25874 VtxDegcvtxdg 26361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-pr 4180 df-uni 4437 df-iota 5851 df-fv 5896 |
This theorem is referenced by: frgrwopreg2 27183 frgrwopreglem5 27185 frgrwopreglem5ALT 27186 frgrwopreg 27187 |
Copyright terms: Public domain | W3C validator |