MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem1 Structured version   Visualization version   Unicode version

Theorem frgrwopreglem1 27176
Description: Lemma 1 for frgrwopreg 27187: the classes  A and 
B are sets. The definition of  A and  B corresponds to definition 3 in [Huneke] p. 2: "Let A be the set of all vertices of degree k, let B be the set of all vertices of degree different from k, ..." (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.)
Hypotheses
Ref Expression
frgrwopreg.v  |-  V  =  (Vtx `  G )
frgrwopreg.d  |-  D  =  (VtxDeg `  G )
frgrwopreg.a  |-  A  =  { x  e.  V  |  ( D `  x )  =  K }
frgrwopreg.b  |-  B  =  ( V  \  A
)
Assertion
Ref Expression
frgrwopreglem1  |-  ( A  e.  _V  /\  B  e.  _V )
Distinct variable group:    x, V
Allowed substitution hints:    A( x)    B( x)    D( x)    G( x)    K( x)

Proof of Theorem frgrwopreglem1
StepHypRef Expression
1 frgrwopreg.v . . 3  |-  V  =  (Vtx `  G )
2 fvex 6201 . . 3  |-  (Vtx `  G )  e.  _V
31, 2eqeltri 2697 . 2  |-  V  e. 
_V
4 frgrwopreg.a . . . 4  |-  A  =  { x  e.  V  |  ( D `  x )  =  K }
5 rabexg 4812 . . . 4  |-  ( V  e.  _V  ->  { x  e.  V  |  ( D `  x )  =  K }  e.  _V )
64, 5syl5eqel 2705 . . 3  |-  ( V  e.  _V  ->  A  e.  _V )
7 frgrwopreg.b . . . 4  |-  B  =  ( V  \  A
)
8 difexg 4808 . . . 4  |-  ( V  e.  _V  ->  ( V  \  A )  e. 
_V )
97, 8syl5eqel 2705 . . 3  |-  ( V  e.  _V  ->  B  e.  _V )
106, 9jca 554 . 2  |-  ( V  e.  _V  ->  ( A  e.  _V  /\  B  e.  _V ) )
113, 10ax-mp 5 1  |-  ( A  e.  _V  /\  B  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    \ cdif 3571   ` cfv 5888  Vtxcvtx 25874  VtxDegcvtxdg 26361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-fv 5896
This theorem is referenced by:  frgrwopreg2  27183  frgrwopreglem5  27185  frgrwopreglem5ALT  27186  frgrwopreg  27187
  Copyright terms: Public domain W3C validator