MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreg Structured version   Visualization version   GIF version

Theorem frgrwopreg 27187
Description: In a friendship graph there are either no vertices (𝐴 = ∅) or exactly one vertex ((#‘𝐴) = 1) having degree 𝐾, or all (𝐵 = ∅) or all except one vertices ((#‘𝐵) = 1) have degree 𝐾. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 3-Jan-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
Assertion
Ref Expression
frgrwopreg (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝐵

Proof of Theorem frgrwopreg
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrwopreg.v . . 3 𝑉 = (Vtx‘𝐺)
2 frgrwopreg.d . . 3 𝐷 = (VtxDeg‘𝐺)
3 frgrwopreg.a . . 3 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 frgrwopreg.b . . 3 𝐵 = (𝑉𝐴)
51, 2, 3, 4frgrwopreglem1 27176 . 2 (𝐴 ∈ V ∧ 𝐵 ∈ V)
6 hashv01gt1 13133 . . . 4 (𝐴 ∈ V → ((#‘𝐴) = 0 ∨ (#‘𝐴) = 1 ∨ 1 < (#‘𝐴)))
7 hasheq0 13154 . . . . . 6 (𝐴 ∈ V → ((#‘𝐴) = 0 ↔ 𝐴 = ∅))
8 biidd 252 . . . . . 6 (𝐴 ∈ V → ((#‘𝐴) = 1 ↔ (#‘𝐴) = 1))
9 biidd 252 . . . . . 6 (𝐴 ∈ V → (1 < (#‘𝐴) ↔ 1 < (#‘𝐴)))
107, 8, 93orbi123d 1398 . . . . 5 (𝐴 ∈ V → (((#‘𝐴) = 0 ∨ (#‘𝐴) = 1 ∨ 1 < (#‘𝐴)) ↔ (𝐴 = ∅ ∨ (#‘𝐴) = 1 ∨ 1 < (#‘𝐴))))
11 hashv01gt1 13133 . . . . . . 7 (𝐵 ∈ V → ((#‘𝐵) = 0 ∨ (#‘𝐵) = 1 ∨ 1 < (#‘𝐵)))
12 hasheq0 13154 . . . . . . . . 9 (𝐵 ∈ V → ((#‘𝐵) = 0 ↔ 𝐵 = ∅))
13 biidd 252 . . . . . . . . 9 (𝐵 ∈ V → ((#‘𝐵) = 1 ↔ (#‘𝐵) = 1))
14 biidd 252 . . . . . . . . 9 (𝐵 ∈ V → (1 < (#‘𝐵) ↔ 1 < (#‘𝐵)))
1512, 13, 143orbi123d 1398 . . . . . . . 8 (𝐵 ∈ V → (((#‘𝐵) = 0 ∨ (#‘𝐵) = 1 ∨ 1 < (#‘𝐵)) ↔ (𝐵 = ∅ ∨ (#‘𝐵) = 1 ∨ 1 < (#‘𝐵))))
16 olc 399 . . . . . . . . . . 11 (𝐵 = ∅ → ((#‘𝐵) = 1 ∨ 𝐵 = ∅))
1716olcd 408 . . . . . . . . . 10 (𝐵 = ∅ → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))
18172a1d 26 . . . . . . . . 9 (𝐵 = ∅ → ((𝐴 = ∅ ∨ (#‘𝐴) = 1 ∨ 1 < (#‘𝐴)) → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))))
19 orc 400 . . . . . . . . . . 11 ((#‘𝐵) = 1 → ((#‘𝐵) = 1 ∨ 𝐵 = ∅))
2019olcd 408 . . . . . . . . . 10 ((#‘𝐵) = 1 → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))
21202a1d 26 . . . . . . . . 9 ((#‘𝐵) = 1 → ((𝐴 = ∅ ∨ (#‘𝐴) = 1 ∨ 1 < (#‘𝐴)) → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))))
22 olc 399 . . . . . . . . . . . . 13 (𝐴 = ∅ → ((#‘𝐴) = 1 ∨ 𝐴 = ∅))
2322orcd 407 . . . . . . . . . . . 12 (𝐴 = ∅ → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))
24232a1d 26 . . . . . . . . . . 11 (𝐴 = ∅ → (1 < (#‘𝐵) → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))))
25 orc 400 . . . . . . . . . . . . 13 ((#‘𝐴) = 1 → ((#‘𝐴) = 1 ∨ 𝐴 = ∅))
2625orcd 407 . . . . . . . . . . . 12 ((#‘𝐴) = 1 → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))
27262a1d 26 . . . . . . . . . . 11 ((#‘𝐴) = 1 → (1 < (#‘𝐵) → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))))
28 eqid 2622 . . . . . . . . . . . . . . 15 (Edg‘𝐺) = (Edg‘𝐺)
291, 2, 3, 4, 28frgrwopreglem5 27185 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝐴) ∧ 1 < (#‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))))
30 frgrusgr 27124 . . . . . . . . . . . . . . . 16 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph )
31 simplll 798 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝐺 ∈ USGraph )
32 elrabi 3359 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} → 𝑎𝑉)
3332, 3eleq2s 2719 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎𝐴𝑎𝑉)
3433adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎𝐴𝑥𝐴) → 𝑎𝑉)
3534ad3antlr 767 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑎𝑉)
36 rabidim1 3117 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} → 𝑥𝑉)
3736, 3eleq2s 2719 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐴𝑥𝑉)
3837adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎𝐴𝑥𝐴) → 𝑥𝑉)
3938ad3antlr 767 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑥𝑉)
40 simprl 794 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑎𝑥)
41 eldifi 3732 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 ∈ (𝑉𝐴) → 𝑏𝑉)
4241, 4eleq2s 2719 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏𝐵𝑏𝑉)
4342adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝐵𝑦𝐵) → 𝑏𝑉)
4443ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑏𝑉)
45 eldifi 3732 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝑉𝐴) → 𝑦𝑉)
4645, 4eleq2s 2719 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝐵𝑦𝑉)
4746adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝐵𝑦𝐵) → 𝑦𝑉)
4847ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑦𝑉)
49 simprr 796 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → 𝑏𝑦)
501, 284cyclusnfrgr 27156 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ USGraph ∧ (𝑎𝑉𝑥𝑉𝑎𝑥) ∧ (𝑏𝑉𝑦𝑉𝑏𝑦)) → ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → 𝐺 ∉ FriendGraph ))
5131, 35, 39, 40, 44, 48, 49, 50syl133anc 1349 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ (𝑎𝑥𝑏𝑦)) → ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → 𝐺 ∉ FriendGraph ))
5251exp4b 632 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → ((𝑎𝑥𝑏𝑦) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) → (({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺)) → 𝐺 ∉ FriendGraph ))))
53523impd 1281 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → (((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → 𝐺 ∉ FriendGraph ))
54 df-nel 2898 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
55 pm2.21 120 . . . . . . . . . . . . . . . . . . . . 21 𝐺 ∈ FriendGraph → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅))))
5654, 55sylbi 207 . . . . . . . . . . . . . . . . . . . 20 (𝐺 ∉ FriendGraph → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅))))
5753, 56syl6 35 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → (((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))))
5857rexlimdvva 3038 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ (𝑎𝐴𝑥𝐴)) → (∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))))
5958rexlimdvva 3038 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ USGraph → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6059com23 86 . . . . . . . . . . . . . . . 16 (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6130, 60mpcom 38 . . . . . . . . . . . . . . 15 (𝐺 ∈ FriendGraph → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅))))
62613ad2ant1 1082 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝐴) ∧ 1 < (#‘𝐵)) → (∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑥} ∈ (Edg‘𝐺)) ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑎} ∈ (Edg‘𝐺))) → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅))))
6329, 62mpd 15 . . . . . . . . . . . . 13 ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝐴) ∧ 1 < (#‘𝐵)) → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))
64633exp 1264 . . . . . . . . . . . 12 (𝐺 ∈ FriendGraph → (1 < (#‘𝐴) → (1 < (#‘𝐵) → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6564com3l 89 . . . . . . . . . . 11 (1 < (#‘𝐴) → (1 < (#‘𝐵) → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6624, 27, 653jaoi 1391 . . . . . . . . . 10 ((𝐴 = ∅ ∨ (#‘𝐴) = 1 ∨ 1 < (#‘𝐴)) → (1 < (#‘𝐵) → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6766com12 32 . . . . . . . . 9 (1 < (#‘𝐵) → ((𝐴 = ∅ ∨ (#‘𝐴) = 1 ∨ 1 < (#‘𝐴)) → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6818, 21, 673jaoi 1391 . . . . . . . 8 ((𝐵 = ∅ ∨ (#‘𝐵) = 1 ∨ 1 < (#‘𝐵)) → ((𝐴 = ∅ ∨ (#‘𝐴) = 1 ∨ 1 < (#‘𝐴)) → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))))
6915, 68syl6bi 243 . . . . . . 7 (𝐵 ∈ V → (((#‘𝐵) = 0 ∨ (#‘𝐵) = 1 ∨ 1 < (#‘𝐵)) → ((𝐴 = ∅ ∨ (#‘𝐴) = 1 ∨ 1 < (#‘𝐴)) → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅))))))
7011, 69mpd 15 . . . . . 6 (𝐵 ∈ V → ((𝐴 = ∅ ∨ (#‘𝐴) = 1 ∨ 1 < (#‘𝐴)) → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))))
7170com12 32 . . . . 5 ((𝐴 = ∅ ∨ (#‘𝐴) = 1 ∨ 1 < (#‘𝐴)) → (𝐵 ∈ V → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))))
7210, 71syl6bi 243 . . . 4 (𝐴 ∈ V → (((#‘𝐴) = 0 ∨ (#‘𝐴) = 1 ∨ 1 < (#‘𝐴)) → (𝐵 ∈ V → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅))))))
736, 72mpd 15 . . 3 (𝐴 ∈ V → (𝐵 ∈ V → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))))
7473imp 445 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅))))
755, 74ax-mp 5 1 (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wnel 2897  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  c0 3915  {cpr 4179   class class class wbr 4653  cfv 5888  0cc0 9936  1c1 9937   < clt 10074  #chash 13117  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044  VtxDegcvtxdg 26361   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-fz 12327  df-hash 13118  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-nbgr 26228  df-vtxdg 26362  df-frgr 27121
This theorem is referenced by:  frgrregorufr0  27188
  Copyright terms: Public domain W3C validator