MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funforn Structured version   Visualization version   GIF version

Theorem funforn 6122
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
funforn (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)

Proof of Theorem funforn
StepHypRef Expression
1 funfn 5918 . 2 (Fun 𝐴𝐴 Fn dom 𝐴)
2 dffn4 6121 . 2 (𝐴 Fn dom 𝐴𝐴:dom 𝐴onto→ran 𝐴)
31, 2bitri 264 1 (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 196  dom cdm 5114  ran crn 5115  Fun wfun 5882   Fn wfn 5883  ontowfo 5886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-cleq 2615  df-fn 5891  df-fo 5894
This theorem is referenced by:  fimacnvinrn  6348  imacosupp  7335  ordtypelem8  8430  wdomima2g  8491  imadomg  9356  gruima  9624  oppglsm  18057  1stcrestlem  21255  dfac14  21421  qtoptop2  21502
  Copyright terms: Public domain W3C validator