Step | Hyp | Ref
| Expression |
1 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑥 → (𝑓‘𝑘) = (𝑓‘𝑥)) |
2 | 1 | unieqd 4446 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → ∪ (𝑓‘𝑘) = ∪ (𝑓‘𝑥)) |
3 | 2 | pweqd 4163 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → 𝒫 ∪ (𝑓‘𝑘) = 𝒫 ∪
(𝑓‘𝑥)) |
4 | 3 | cbvixpv 7926 |
. . . . . . 7
⊢ X𝑘 ∈
dom 𝑓𝒫 ∪ (𝑓‘𝑘) = X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥) |
5 | 4 | eleq2i 2693 |
. . . . . 6
⊢ (𝑠 ∈ X𝑘 ∈
dom 𝑓𝒫 ∪ (𝑓‘𝑘) ↔ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) |
6 | | simplr 792 |
. . . . . . . . . . 11
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → 𝑓:dom 𝑓⟶Top) |
7 | 6 | feqmptd 6249 |
. . . . . . . . . 10
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → 𝑓 = (𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘))) |
8 | 7 | fveq2d 6195 |
. . . . . . . . 9
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → (∏t‘𝑓) =
(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘)))) |
9 | 8 | fveq2d 6195 |
. . . . . . . 8
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) →
(cls‘(∏t‘𝑓)) =
(cls‘(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘))))) |
10 | 9 | fveq1d 6193 |
. . . . . . 7
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) →
((cls‘(∏t‘𝑓))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) =
((cls‘(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘))))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘))) |
11 | | eqid 2622 |
. . . . . . . 8
⊢
(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘))) = (∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘))) |
12 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑓 ∈ V |
13 | 12 | dmex 7099 |
. . . . . . . . 9
⊢ dom 𝑓 ∈ V |
14 | 13 | a1i 11 |
. . . . . . . 8
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → dom 𝑓 ∈ V) |
15 | 6 | ffvelrnda 6359 |
. . . . . . . . 9
⊢
((((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑓‘𝑘) ∈ Top) |
16 | | eqid 2622 |
. . . . . . . . . 10
⊢ ∪ (𝑓‘𝑘) = ∪ (𝑓‘𝑘) |
17 | 16 | toptopon 20722 |
. . . . . . . . 9
⊢ ((𝑓‘𝑘) ∈ Top ↔ (𝑓‘𝑘) ∈ (TopOn‘∪ (𝑓‘𝑘))) |
18 | 15, 17 | sylib 208 |
. . . . . . . 8
⊢
((((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑓‘𝑘) ∈ (TopOn‘∪ (𝑓‘𝑘))) |
19 | | simpr 477 |
. . . . . . . . . . . 12
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) |
20 | 19, 5 | sylibr 224 |
. . . . . . . . . . 11
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → 𝑠 ∈ X𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)) |
21 | | vex 3203 |
. . . . . . . . . . . . 13
⊢ 𝑠 ∈ V |
22 | 21 | elixp 7915 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ X𝑘 ∈
dom 𝑓𝒫 ∪ (𝑓‘𝑘) ↔ (𝑠 Fn dom 𝑓 ∧ ∀𝑘 ∈ dom 𝑓(𝑠‘𝑘) ∈ 𝒫 ∪ (𝑓‘𝑘))) |
23 | 22 | simprbi 480 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ X𝑘 ∈
dom 𝑓𝒫 ∪ (𝑓‘𝑘) → ∀𝑘 ∈ dom 𝑓(𝑠‘𝑘) ∈ 𝒫 ∪ (𝑓‘𝑘)) |
24 | 20, 23 | syl 17 |
. . . . . . . . . 10
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → ∀𝑘 ∈ dom 𝑓(𝑠‘𝑘) ∈ 𝒫 ∪ (𝑓‘𝑘)) |
25 | 24 | r19.21bi 2932 |
. . . . . . . . 9
⊢
((((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑠‘𝑘) ∈ 𝒫 ∪ (𝑓‘𝑘)) |
26 | 25 | elpwid 4170 |
. . . . . . . 8
⊢
((((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑠‘𝑘) ⊆ ∪ (𝑓‘𝑘)) |
27 | | fvex 6201 |
. . . . . . . . . 10
⊢ (𝑠‘𝑘) ∈ V |
28 | 13, 27 | iunex 7147 |
. . . . . . . . 9
⊢ ∪ 𝑘 ∈ dom 𝑓(𝑠‘𝑘) ∈ V |
29 | | simpll 790 |
. . . . . . . . . 10
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) →
CHOICE) |
30 | | acacni 8962 |
. . . . . . . . . 10
⊢
((CHOICE ∧ dom 𝑓 ∈ V) → AC dom 𝑓 = V) |
31 | 29, 13, 30 | sylancl 694 |
. . . . . . . . 9
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → AC dom 𝑓 = V) |
32 | 28, 31 | syl5eleqr 2708 |
. . . . . . . 8
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → ∪
𝑘 ∈ dom 𝑓(𝑠‘𝑘) ∈ AC dom 𝑓) |
33 | 11, 14, 18, 26, 32 | ptclsg 21418 |
. . . . . . 7
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) →
((cls‘(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘))))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) |
34 | 10, 33 | eqtrd 2656 |
. . . . . 6
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) →
((cls‘(∏t‘𝑓))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) |
35 | 5, 34 | sylan2b 492 |
. . . . 5
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)) →
((cls‘(∏t‘𝑓))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) |
36 | 35 | ralrimiva 2966 |
. . . 4
⊢
((CHOICE ∧ 𝑓:dom 𝑓⟶Top) → ∀𝑠 ∈ X
𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) |
37 | 36 | ex 450 |
. . 3
⊢
(CHOICE → (𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)))) |
38 | 37 | alrimiv 1855 |
. 2
⊢
(CHOICE → ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)))) |
39 | | vex 3203 |
. . . . . . . 8
⊢ 𝑔 ∈ V |
40 | 39 | dmex 7099 |
. . . . . . 7
⊢ dom 𝑔 ∈ V |
41 | 40 | a1i 11 |
. . . . . 6
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → dom 𝑔 ∈ V) |
42 | | fvex 6201 |
. . . . . . 7
⊢ (𝑔‘𝑥) ∈ V |
43 | 42 | a1i 11 |
. . . . . 6
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (𝑔‘𝑥) ∈ V) |
44 | | simplrr 801 |
. . . . . . . 8
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → ∅ ∉ ran 𝑔) |
45 | | df-nel 2898 |
. . . . . . . 8
⊢ (∅
∉ ran 𝑔 ↔ ¬
∅ ∈ ran 𝑔) |
46 | 44, 45 | sylib 208 |
. . . . . . 7
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → ¬ ∅ ∈ ran 𝑔) |
47 | | funforn 6122 |
. . . . . . . . . . . 12
⊢ (Fun
𝑔 ↔ 𝑔:dom 𝑔–onto→ran 𝑔) |
48 | | fof 6115 |
. . . . . . . . . . . 12
⊢ (𝑔:dom 𝑔–onto→ran 𝑔 → 𝑔:dom 𝑔⟶ran 𝑔) |
49 | 47, 48 | sylbi 207 |
. . . . . . . . . . 11
⊢ (Fun
𝑔 → 𝑔:dom 𝑔⟶ran 𝑔) |
50 | 49 | ad2antrl 764 |
. . . . . . . . . 10
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → 𝑔:dom 𝑔⟶ran 𝑔) |
51 | 50 | ffvelrnda 6359 |
. . . . . . . . 9
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (𝑔‘𝑥) ∈ ran 𝑔) |
52 | | eleq1 2689 |
. . . . . . . . 9
⊢ ((𝑔‘𝑥) = ∅ → ((𝑔‘𝑥) ∈ ran 𝑔 ↔ ∅ ∈ ran 𝑔)) |
53 | 51, 52 | syl5ibcom 235 |
. . . . . . . 8
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → ((𝑔‘𝑥) = ∅ → ∅ ∈ ran 𝑔)) |
54 | 53 | necon3bd 2808 |
. . . . . . 7
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (¬ ∅ ∈ ran 𝑔 → (𝑔‘𝑥) ≠ ∅)) |
55 | 46, 54 | mpd 15 |
. . . . . 6
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (𝑔‘𝑥) ≠ ∅) |
56 | | eqid 2622 |
. . . . . 6
⊢ 𝒫
∪ (𝑔‘𝑥) = 𝒫 ∪
(𝑔‘𝑥) |
57 | | eqid 2622 |
. . . . . 6
⊢ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} = {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} |
58 | | eqid 2622 |
. . . . . 6
⊢
(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})) = (∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})) |
59 | | simprl 794 |
. . . . . . . . 9
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → Fun 𝑔) |
60 | | funfn 5918 |
. . . . . . . . 9
⊢ (Fun
𝑔 ↔ 𝑔 Fn dom 𝑔) |
61 | 59, 60 | sylib 208 |
. . . . . . . 8
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → 𝑔 Fn dom 𝑔) |
62 | | ssun1 3776 |
. . . . . . . . . 10
⊢ (𝑔‘𝑘) ⊆ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) |
63 | | fvex 6201 |
. . . . . . . . . . 11
⊢ (𝑔‘𝑘) ∈ V |
64 | 63 | elpw 4164 |
. . . . . . . . . 10
⊢ ((𝑔‘𝑘) ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ↔ (𝑔‘𝑘) ⊆ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) |
65 | 62, 64 | mpbir 221 |
. . . . . . . . 9
⊢ (𝑔‘𝑘) ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) |
66 | 65 | rgenw 2924 |
. . . . . . . 8
⊢
∀𝑘 ∈ dom
𝑔(𝑔‘𝑘) ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) |
67 | 39 | elixp 7915 |
. . . . . . . 8
⊢ (𝑔 ∈ X𝑘 ∈
dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ↔ (𝑔 Fn dom 𝑔 ∧ ∀𝑘 ∈ dom 𝑔(𝑔‘𝑘) ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))) |
68 | 61, 66, 67 | sylanblrc 697 |
. . . . . . 7
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → 𝑔 ∈ X𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) |
69 | | simpl 473 |
. . . . . . . 8
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)))) |
70 | | snex 4908 |
. . . . . . . . . . . . 13
⊢
{𝒫 ∪ (𝑔‘𝑥)} ∈ V |
71 | 42, 70 | unex 6956 |
. . . . . . . . . . . 12
⊢ ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∈ V |
72 | | ssun2 3777 |
. . . . . . . . . . . . 13
⊢
{𝒫 ∪ (𝑔‘𝑥)} ⊆ ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) |
73 | 42 | uniex 6953 |
. . . . . . . . . . . . . . 15
⊢ ∪ (𝑔‘𝑥) ∈ V |
74 | 73 | pwex 4848 |
. . . . . . . . . . . . . 14
⊢ 𝒫
∪ (𝑔‘𝑥) ∈ V |
75 | 74 | snid 4208 |
. . . . . . . . . . . . 13
⊢ 𝒫
∪ (𝑔‘𝑥) ∈ {𝒫 ∪ (𝑔‘𝑥)} |
76 | 72, 75 | sselii 3600 |
. . . . . . . . . . . 12
⊢ 𝒫
∪ (𝑔‘𝑥) ∈ ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) |
77 | | epttop 20813 |
. . . . . . . . . . . 12
⊢ ((((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∈ V ∧ 𝒫 ∪ (𝑔‘𝑥) ∈ ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)})) → {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} ∈ (TopOn‘((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))) |
78 | 71, 76, 77 | mp2an 708 |
. . . . . . . . . . 11
⊢ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} ∈ (TopOn‘((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)})) |
79 | 78 | topontopi 20720 |
. . . . . . . . . 10
⊢ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} ∈ Top |
80 | 79 | a1i 11 |
. . . . . . . . 9
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} ∈ Top) |
81 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) |
82 | 80, 81 | fmptd 6385 |
. . . . . . . 8
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}):dom 𝑔⟶Top) |
83 | 40 | mptex 6486 |
. . . . . . . . 9
⊢ (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∈ V |
84 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → 𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})) |
85 | | dmeq 5324 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → dom 𝑓 = dom (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})) |
86 | 71 | pwex 4848 |
. . . . . . . . . . . . . 14
⊢ 𝒫
((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∈ V |
87 | 86 | rabex 4813 |
. . . . . . . . . . . . 13
⊢ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} ∈ V |
88 | 87, 81 | dmmpti 6023 |
. . . . . . . . . . . 12
⊢ dom
(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) = dom 𝑔 |
89 | 85, 88 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → dom 𝑓 = dom 𝑔) |
90 | 84, 89 | feq12d 6033 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → (𝑓:dom 𝑓⟶Top ↔ (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}):dom 𝑔⟶Top)) |
91 | 89 | ixpeq1d 7920 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘) = X𝑘 ∈ dom 𝑔𝒫 ∪ (𝑓‘𝑘)) |
92 | | fveq1 6190 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → (𝑓‘𝑘) = ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘𝑘)) |
93 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑘 → (𝑔‘𝑥) = (𝑔‘𝑘)) |
94 | 93 | unieqd 4446 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑘 → ∪ (𝑔‘𝑥) = ∪ (𝑔‘𝑘)) |
95 | 94 | pweqd 4163 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑘 → 𝒫 ∪ (𝑔‘𝑥) = 𝒫 ∪
(𝑔‘𝑘)) |
96 | 95 | sneqd 4189 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑘 → {𝒫 ∪ (𝑔‘𝑥)} = {𝒫 ∪
(𝑔‘𝑘)}) |
97 | 93, 96 | uneq12d 3768 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑘 → ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) |
98 | 97 | pweqd 4163 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑘 → 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) = 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) |
99 | 95 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑘 → (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 ↔ 𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦)) |
100 | 97 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑘 → (𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ↔ 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))) |
101 | 99, 100 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑘 → ((𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)})) ↔ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})))) |
102 | 98, 101 | rabeqbidv 3195 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑘 → {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} = {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))}) |
103 | | snex 4908 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
{𝒫 ∪ (𝑔‘𝑘)} ∈ V |
104 | 63, 103 | unex 6956 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∈ V |
105 | 104 | pwex 4848 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝒫
((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∈ V |
106 | 105 | rabex 4813 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))} ∈ V |
107 | 102, 81, 106 | fvmpt 6282 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ dom 𝑔 → ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘𝑘) = {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))}) |
108 | 92, 107 | sylan9eq 2676 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → (𝑓‘𝑘) = {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))}) |
109 | 108 | unieqd 4446 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → ∪ (𝑓‘𝑘) = ∪ {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))}) |
110 | | ssun2 3777 |
. . . . . . . . . . . . . . . . . 18
⊢
{𝒫 ∪ (𝑔‘𝑘)} ⊆ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) |
111 | 63 | uniex 6953 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ (𝑔‘𝑘) ∈ V |
112 | 111 | pwex 4848 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝒫
∪ (𝑔‘𝑘) ∈ V |
113 | 112 | snid 4208 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝒫
∪ (𝑔‘𝑘) ∈ {𝒫 ∪ (𝑔‘𝑘)} |
114 | 110, 113 | sselii 3600 |
. . . . . . . . . . . . . . . . 17
⊢ 𝒫
∪ (𝑔‘𝑘) ∈ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) |
115 | | epttop 20813 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∈ V ∧ 𝒫 ∪ (𝑔‘𝑘) ∈ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) → {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))} ∈ (TopOn‘((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))) |
116 | 104, 114,
115 | mp2an 708 |
. . . . . . . . . . . . . . . 16
⊢ {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))} ∈ (TopOn‘((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) |
117 | 116 | toponunii 20721 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) = ∪ {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))} |
118 | 109, 117 | syl6eqr 2674 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → ∪ (𝑓‘𝑘) = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) |
119 | 118 | pweqd 4163 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → 𝒫 ∪ (𝑓‘𝑘) = 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) |
120 | 119 | ixpeq2dva 7923 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑔𝒫 ∪ (𝑓‘𝑘) = X𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) |
121 | 91, 120 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘) = X𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) |
122 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → (∏t‘𝑓) =
(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}))) |
123 | 122 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) →
(cls‘(∏t‘𝑓)) =
(cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))) |
124 | 89 | ixpeq1d 7920 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑓(𝑠‘𝑘) = X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) |
125 | 123, 124 | fveq12d 6197 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) →
((cls‘(∏t‘𝑓))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) =
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘))) |
126 | 89 | ixpeq1d 7920 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) |
127 | 108 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → (cls‘(𝑓‘𝑘)) = (cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})) |
128 | 127 | fveq1d 6193 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → ((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)) = ((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘))) |
129 | 128 | ixpeq2dva 7923 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑔((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘))) |
130 | 126, 129 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘))) |
131 | 125, 130 | eqeq12d 2637 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) →
(((cls‘(∏t‘𝑓))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)) ↔
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘)))) |
132 | 121, 131 | raleqbidv 3152 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → (∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)) ↔ ∀𝑠 ∈ X 𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}))})‘(𝑠‘𝑘)))) |
133 | 90, 132 | imbi12d 334 |
. . . . . . . . 9
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → ((𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ↔ ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}):dom 𝑔⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}))})‘(𝑠‘𝑘))))) |
134 | 83, 133 | spcv 3299 |
. . . . . . . 8
⊢
(∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) → ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}):dom 𝑔⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}))})‘(𝑠‘𝑘)))) |
135 | 69, 82, 134 | sylc 65 |
. . . . . . 7
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}))})‘(𝑠‘𝑘))) |
136 | | fveq1 6190 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑔 → (𝑠‘𝑘) = (𝑔‘𝑘)) |
137 | 136 | ixpeq2dv 7924 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑔 → X𝑘 ∈ dom 𝑔(𝑠‘𝑘) = X𝑘 ∈ dom 𝑔(𝑔‘𝑘)) |
138 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑥 → (𝑔‘𝑘) = (𝑔‘𝑥)) |
139 | 138 | cbvixpv 7926 |
. . . . . . . . . . 11
⊢ X𝑘 ∈
dom 𝑔(𝑔‘𝑘) = X𝑥 ∈ dom 𝑔(𝑔‘𝑥) |
140 | 137, 139 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑔 → X𝑘 ∈ dom 𝑔(𝑠‘𝑘) = X𝑥 ∈ dom 𝑔(𝑔‘𝑥)) |
141 | 140 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑠 = 𝑔 →
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) =
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔‘𝑥))) |
142 | 136 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑔 → ((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘)) = ((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑔‘𝑘))) |
143 | 142 | ixpeq2dv 7924 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑔 → X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑔‘𝑘))) |
144 | 138 | unieqd 4446 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑥 → ∪ (𝑔‘𝑘) = ∪ (𝑔‘𝑥)) |
145 | 144 | pweqd 4163 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑥 → 𝒫 ∪ (𝑔‘𝑘) = 𝒫 ∪
(𝑔‘𝑥)) |
146 | 145 | sneqd 4189 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑥 → {𝒫 ∪ (𝑔‘𝑘)} = {𝒫 ∪
(𝑔‘𝑥)}) |
147 | 138, 146 | uneq12d 3768 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑥 → ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)})) |
148 | 147 | pweqd 4163 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑥 → 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) = 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)})) |
149 | 145 | eleq1d 2686 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑥 → (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 ↔ 𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦)) |
150 | 147 | eqeq2d 2632 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑥 → (𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ↔ 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))) |
151 | 149, 150 | imbi12d 334 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑥 → ((𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) ↔ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)})))) |
152 | 148, 151 | rabeqbidv 3195 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑥 → {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))} = {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) |
153 | 152 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑥 → (cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))}) = (cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})) |
154 | 153, 138 | fveq12d 6197 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑥 → ((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑔‘𝑘)) = ((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘(𝑔‘𝑥))) |
155 | 154 | cbvixpv 7926 |
. . . . . . . . . 10
⊢ X𝑘 ∈
dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑔‘𝑘)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘(𝑔‘𝑥)) |
156 | 143, 155 | syl6eq 2672 |
. . . . . . . . 9
⊢ (𝑠 = 𝑔 → X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘(𝑔‘𝑥))) |
157 | 141, 156 | eqeq12d 2637 |
. . . . . . . 8
⊢ (𝑠 = 𝑔 →
(((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘)) ↔
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔‘𝑥)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘(𝑔‘𝑥)))) |
158 | 157 | rspcv 3305 |
. . . . . . 7
⊢ (𝑔 ∈ X𝑘 ∈
dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) → (∀𝑠 ∈ X 𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}))})‘(𝑠‘𝑘)) →
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔‘𝑥)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}))})‘(𝑔‘𝑥)))) |
159 | 68, 135, 158 | sylc 65 |
. . . . . 6
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) →
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔‘𝑥)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘(𝑔‘𝑥))) |
160 | 41, 43, 55, 56, 57, 58, 159 | dfac14lem 21420 |
. . . . 5
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → X𝑥 ∈ dom 𝑔(𝑔‘𝑥) ≠ ∅) |
161 | 160 | ex 450 |
. . . 4
⊢
(∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) → ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔‘𝑥) ≠ ∅)) |
162 | 161 | alrimiv 1855 |
. . 3
⊢
(∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) → ∀𝑔((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔‘𝑥) ≠ ∅)) |
163 | | dfac9 8958 |
. . 3
⊢
(CHOICE ↔ ∀𝑔((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔‘𝑥) ≠ ∅)) |
164 | 162, 163 | sylibr 224 |
. 2
⊢
(∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) →
CHOICE) |
165 | 38, 164 | impbii 199 |
1
⊢
(CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)))) |