MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppglsm Structured version   Visualization version   GIF version

Theorem oppglsm 18057
Description: The subspace sum operation in the opposite group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
oppglsm.o 𝑂 = (oppg𝐺)
oppglsm.p = (LSSum‘𝐺)
Assertion
Ref Expression
oppglsm (𝑇(LSSum‘𝑂)𝑈) = (𝑈 𝑇)

Proof of Theorem oppglsm
Dummy variables 𝑢 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2622 . . . . . . . 8 (+g𝐺) = (+g𝐺)
3 oppglsm.p . . . . . . . 8 = (LSSum‘𝐺)
41, 2, 3lsmfval 18053 . . . . . . 7 (𝐺 ∈ V → = (𝑢 ∈ 𝒫 (Base‘𝐺), 𝑡 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))))
54tposeqd 7355 . . . . . 6 (𝐺 ∈ V → tpos = tpos (𝑢 ∈ 𝒫 (Base‘𝐺), 𝑡 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))))
6 eqid 2622 . . . . . . . . . . . . 13 (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))
76reldmmpt2 6771 . . . . . . . . . . . 12 Rel dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))
86mpt2fun 6762 . . . . . . . . . . . . 13 Fun (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))
9 funforn 6122 . . . . . . . . . . . . 13 (Fun (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) ↔ (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)):dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))–onto→ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)))
108, 9mpbi 220 . . . . . . . . . . . 12 (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)):dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))–onto→ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))
11 tposfo2 7375 . . . . . . . . . . . 12 (Rel dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) → ((𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)):dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))–onto→ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) → tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)):dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))–onto→ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))))
127, 10, 11mp2 9 . . . . . . . . . . 11 tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)):dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))–onto→ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))
13 forn 6118 . . . . . . . . . . 11 (tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)):dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))–onto→ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) → ran tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)))
1412, 13ax-mp 5 . . . . . . . . . 10 ran tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))
15 oppglsm.o . . . . . . . . . . . . . . . 16 𝑂 = (oppg𝐺)
16 eqid 2622 . . . . . . . . . . . . . . . 16 (+g𝑂) = (+g𝑂)
172, 15, 16oppgplus 17779 . . . . . . . . . . . . . . 15 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝐺)𝑥)
1817eqcomi 2631 . . . . . . . . . . . . . 14 (𝑦(+g𝐺)𝑥) = (𝑥(+g𝑂)𝑦)
1918a1i 11 . . . . . . . . . . . . 13 ((𝑦𝑢𝑥𝑡) → (𝑦(+g𝐺)𝑥) = (𝑥(+g𝑂)𝑦))
2019mpt2eq3ia 6720 . . . . . . . . . . . 12 (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = (𝑦𝑢, 𝑥𝑡 ↦ (𝑥(+g𝑂)𝑦))
2120tposmpt2 7389 . . . . . . . . . . 11 tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦))
2221rneqi 5352 . . . . . . . . . 10 ran tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦))
2314, 22eqtr3i 2646 . . . . . . . . 9 ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦))
2423a1i 11 . . . . . . . 8 ((𝑢 ∈ 𝒫 (Base‘𝐺) ∧ 𝑡 ∈ 𝒫 (Base‘𝐺)) → ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)))
2524mpt2eq3ia 6720 . . . . . . 7 (𝑢 ∈ 𝒫 (Base‘𝐺), 𝑡 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))) = (𝑢 ∈ 𝒫 (Base‘𝐺), 𝑡 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)))
2625tposmpt2 7389 . . . . . 6 tpos (𝑢 ∈ 𝒫 (Base‘𝐺), 𝑡 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)))
275, 26syl6eq 2672 . . . . 5 (𝐺 ∈ V → tpos = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦))))
28 fvex 6201 . . . . . . 7 (oppg𝐺) ∈ V
2915, 28eqeltri 2697 . . . . . 6 𝑂 ∈ V
3015, 1oppgbas 17781 . . . . . . 7 (Base‘𝐺) = (Base‘𝑂)
31 eqid 2622 . . . . . . 7 (LSSum‘𝑂) = (LSSum‘𝑂)
3230, 16, 31lsmfval 18053 . . . . . 6 (𝑂 ∈ V → (LSSum‘𝑂) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦))))
3329, 32ax-mp 5 . . . . 5 (LSSum‘𝑂) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)))
3427, 33syl6reqr 2675 . . . 4 (𝐺 ∈ V → (LSSum‘𝑂) = tpos )
3534oveqd 6667 . . 3 (𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑇tpos 𝑈))
36 ovtpos 7367 . . 3 (𝑇tpos 𝑈) = (𝑈 𝑇)
3735, 36syl6eq 2672 . 2 (𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑈 𝑇))
38 eqid 2622 . . . . . . 7 (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)
39 0ex 4790 . . . . . . 7 ∅ ∈ V
40 eqidd 2623 . . . . . . 7 ((𝑡 = 𝑇𝑢 = 𝑈) → ∅ = ∅)
4138, 39, 40elovmpt2 6879 . . . . . 6 (𝑥 ∈ (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) ↔ (𝑇 ∈ 𝒫 (Base‘𝐺) ∧ 𝑈 ∈ 𝒫 (Base‘𝐺) ∧ 𝑥 ∈ ∅))
4241simp3bi 1078 . . . . 5 (𝑥 ∈ (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) → 𝑥 ∈ ∅)
4342ssriv 3607 . . . 4 (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) ⊆ ∅
44 ss0 3974 . . . 4 ((𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) ⊆ ∅ → (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) = ∅)
4543, 44ax-mp 5 . . 3 (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) = ∅
46 elpwi 4168 . . . . . . . . . . . . 13 (𝑡 ∈ 𝒫 (Base‘𝐺) → 𝑡 ⊆ (Base‘𝐺))
47463ad2ant2 1083 . . . . . . . . . . . 12 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → 𝑡 ⊆ (Base‘𝐺))
48 fvprc 6185 . . . . . . . . . . . . 13 𝐺 ∈ V → (Base‘𝐺) = ∅)
49483ad2ant1 1082 . . . . . . . . . . . 12 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → (Base‘𝐺) = ∅)
5047, 49sseqtrd 3641 . . . . . . . . . . 11 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → 𝑡 ⊆ ∅)
51 ss0 3974 . . . . . . . . . . 11 (𝑡 ⊆ ∅ → 𝑡 = ∅)
5250, 51syl 17 . . . . . . . . . 10 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → 𝑡 = ∅)
53 eqid 2622 . . . . . . . . . 10 𝑢 = 𝑢
54 mpt2eq12 6715 . . . . . . . . . 10 ((𝑡 = ∅ ∧ 𝑢 = 𝑢) → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)) = (𝑥 ∈ ∅, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)))
5552, 53, 54sylancl 694 . . . . . . . . 9 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)) = (𝑥 ∈ ∅, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)))
56 mpt20 6725 . . . . . . . . 9 (𝑥 ∈ ∅, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)) = ∅
5755, 56syl6eq 2672 . . . . . . . 8 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)) = ∅)
5857rneqd 5353 . . . . . . 7 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)) = ran ∅)
59 rn0 5377 . . . . . . 7 ran ∅ = ∅
6058, 59syl6eq 2672 . . . . . 6 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)) = ∅)
6160mpt2eq3dva 6719 . . . . 5 𝐺 ∈ V → (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅))
6233, 61syl5eq 2668 . . . 4 𝐺 ∈ V → (LSSum‘𝑂) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅))
6362oveqd 6667 . . 3 𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈))
64 fvprc 6185 . . . . . 6 𝐺 ∈ V → (LSSum‘𝐺) = ∅)
653, 64syl5eq 2668 . . . . 5 𝐺 ∈ V → = ∅)
6665oveqd 6667 . . . 4 𝐺 ∈ V → (𝑈 𝑇) = (𝑈𝑇))
67 0ov 6682 . . . 4 (𝑈𝑇) = ∅
6866, 67syl6eq 2672 . . 3 𝐺 ∈ V → (𝑈 𝑇) = ∅)
6945, 63, 683eqtr4a 2682 . 2 𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑈 𝑇))
7037, 69pm2.61i 176 1 (𝑇(LSSum‘𝑂)𝑈) = (𝑈 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  c0 3915  𝒫 cpw 4158  ccnv 5113  dom cdm 5114  ran crn 5115  Rel wrel 5119  Fun wfun 5882  ontowfo 5886  cfv 5888  (class class class)co 6650  cmpt2 6652  tpos ctpos 7351  Basecbs 15857  +gcplusg 15941  oppgcoppg 17775  LSSumclsm 18049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-oppg 17776  df-lsm 18051
This theorem is referenced by:  lsmmod2  18089  lsmdisj2r  18098
  Copyright terms: Public domain W3C validator