| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. . . . . . . 8
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 2 | | eqid 2622 |
. . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 3 | | oppglsm.p |
. . . . . . . 8
⊢ ⊕ =
(LSSum‘𝐺) |
| 4 | 1, 2, 3 | lsmfval 18053 |
. . . . . . 7
⊢ (𝐺 ∈ V → ⊕ =
(𝑢 ∈ 𝒫
(Base‘𝐺), 𝑡 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)))) |
| 5 | 4 | tposeqd 7355 |
. . . . . 6
⊢ (𝐺 ∈ V → tpos ⊕ = tpos
(𝑢 ∈ 𝒫
(Base‘𝐺), 𝑡 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)))) |
| 6 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) |
| 7 | 6 | reldmmpt2 6771 |
. . . . . . . . . . . 12
⊢ Rel dom
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) |
| 8 | 6 | mpt2fun 6762 |
. . . . . . . . . . . . 13
⊢ Fun
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) |
| 9 | | funforn 6122 |
. . . . . . . . . . . . 13
⊢ (Fun
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) ↔ (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)):dom (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))–onto→ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))) |
| 10 | 8, 9 | mpbi 220 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)):dom (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))–onto→ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) |
| 11 | | tposfo2 7375 |
. . . . . . . . . . . 12
⊢ (Rel dom
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) → ((𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)):dom (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))–onto→ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) → tpos (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)):◡dom (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))–onto→ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)))) |
| 12 | 7, 10, 11 | mp2 9 |
. . . . . . . . . . 11
⊢ tpos
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)):◡dom (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))–onto→ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) |
| 13 | | forn 6118 |
. . . . . . . . . . 11
⊢ (tpos
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)):◡dom (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))–onto→ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) → ran tpos (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))) |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . . . . 10
⊢ ran tpos
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) |
| 15 | | oppglsm.o |
. . . . . . . . . . . . . . . 16
⊢ 𝑂 =
(oppg‘𝐺) |
| 16 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢
(+g‘𝑂) = (+g‘𝑂) |
| 17 | 2, 15, 16 | oppgplus 17779 |
. . . . . . . . . . . . . . 15
⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝐺)𝑥) |
| 18 | 17 | eqcomi 2631 |
. . . . . . . . . . . . . 14
⊢ (𝑦(+g‘𝐺)𝑥) = (𝑥(+g‘𝑂)𝑦) |
| 19 | 18 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝑢 ∧ 𝑥 ∈ 𝑡) → (𝑦(+g‘𝐺)𝑥) = (𝑥(+g‘𝑂)𝑦)) |
| 20 | 19 | mpt2eq3ia 6720 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑥(+g‘𝑂)𝑦)) |
| 21 | 20 | tposmpt2 7389 |
. . . . . . . . . . 11
⊢ tpos
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) |
| 22 | 21 | rneqi 5352 |
. . . . . . . . . 10
⊢ ran tpos
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) |
| 23 | 14, 22 | eqtr3i 2646 |
. . . . . . . . 9
⊢ ran
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) |
| 24 | 23 | a1i 11 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝒫
(Base‘𝐺) ∧ 𝑡 ∈ 𝒫
(Base‘𝐺)) → ran
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦))) |
| 25 | 24 | mpt2eq3ia 6720 |
. . . . . . 7
⊢ (𝑢 ∈ 𝒫
(Base‘𝐺), 𝑡 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))) = (𝑢 ∈ 𝒫 (Base‘𝐺), 𝑡 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦))) |
| 26 | 25 | tposmpt2 7389 |
. . . . . 6
⊢ tpos
(𝑢 ∈ 𝒫
(Base‘𝐺), 𝑡 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦))) |
| 27 | 5, 26 | syl6eq 2672 |
. . . . 5
⊢ (𝐺 ∈ V → tpos ⊕ =
(𝑡 ∈ 𝒫
(Base‘𝐺), 𝑢 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)))) |
| 28 | | fvex 6201 |
. . . . . . 7
⊢
(oppg‘𝐺) ∈ V |
| 29 | 15, 28 | eqeltri 2697 |
. . . . . 6
⊢ 𝑂 ∈ V |
| 30 | 15, 1 | oppgbas 17781 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝑂) |
| 31 | | eqid 2622 |
. . . . . . 7
⊢
(LSSum‘𝑂) =
(LSSum‘𝑂) |
| 32 | 30, 16, 31 | lsmfval 18053 |
. . . . . 6
⊢ (𝑂 ∈ V →
(LSSum‘𝑂) = (𝑡 ∈ 𝒫
(Base‘𝐺), 𝑢 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)))) |
| 33 | 29, 32 | ax-mp 5 |
. . . . 5
⊢
(LSSum‘𝑂) =
(𝑡 ∈ 𝒫
(Base‘𝐺), 𝑢 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦))) |
| 34 | 27, 33 | syl6reqr 2675 |
. . . 4
⊢ (𝐺 ∈ V →
(LSSum‘𝑂) = tpos
⊕
) |
| 35 | 34 | oveqd 6667 |
. . 3
⊢ (𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑇tpos ⊕ 𝑈)) |
| 36 | | ovtpos 7367 |
. . 3
⊢ (𝑇tpos ⊕ 𝑈) = (𝑈 ⊕ 𝑇) |
| 37 | 35, 36 | syl6eq 2672 |
. 2
⊢ (𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑈 ⊕ 𝑇)) |
| 38 | | eqid 2622 |
. . . . . . 7
⊢ (𝑡 ∈ 𝒫
(Base‘𝐺), 𝑢 ∈ 𝒫
(Base‘𝐺) ↦
∅) = (𝑡 ∈
𝒫 (Base‘𝐺),
𝑢 ∈ 𝒫
(Base‘𝐺) ↦
∅) |
| 39 | | 0ex 4790 |
. . . . . . 7
⊢ ∅
∈ V |
| 40 | | eqidd 2623 |
. . . . . . 7
⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → ∅ = ∅) |
| 41 | 38, 39, 40 | elovmpt2 6879 |
. . . . . 6
⊢ (𝑥 ∈ (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) ↔ (𝑇 ∈ 𝒫 (Base‘𝐺) ∧ 𝑈 ∈ 𝒫 (Base‘𝐺) ∧ 𝑥 ∈ ∅)) |
| 42 | 41 | simp3bi 1078 |
. . . . 5
⊢ (𝑥 ∈ (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) → 𝑥 ∈ ∅) |
| 43 | 42 | ssriv 3607 |
. . . 4
⊢ (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) ⊆
∅ |
| 44 | | ss0 3974 |
. . . 4
⊢ ((𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) ⊆ ∅ → (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) = ∅) |
| 45 | 43, 44 | ax-mp 5 |
. . 3
⊢ (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) = ∅ |
| 46 | | elpwi 4168 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ 𝒫
(Base‘𝐺) → 𝑡 ⊆ (Base‘𝐺)) |
| 47 | 46 | 3ad2ant2 1083 |
. . . . . . . . . . . 12
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) →
𝑡 ⊆ (Base‘𝐺)) |
| 48 | | fvprc 6185 |
. . . . . . . . . . . . 13
⊢ (¬
𝐺 ∈ V →
(Base‘𝐺) =
∅) |
| 49 | 48 | 3ad2ant1 1082 |
. . . . . . . . . . . 12
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) →
(Base‘𝐺) =
∅) |
| 50 | 47, 49 | sseqtrd 3641 |
. . . . . . . . . . 11
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) →
𝑡 ⊆
∅) |
| 51 | | ss0 3974 |
. . . . . . . . . . 11
⊢ (𝑡 ⊆ ∅ → 𝑡 = ∅) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . 10
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) →
𝑡 =
∅) |
| 53 | | eqid 2622 |
. . . . . . . . . 10
⊢ 𝑢 = 𝑢 |
| 54 | | mpt2eq12 6715 |
. . . . . . . . . 10
⊢ ((𝑡 = ∅ ∧ 𝑢 = 𝑢) → (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦))) |
| 55 | 52, 53, 54 | sylancl 694 |
. . . . . . . . 9
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) →
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦))) |
| 56 | | mpt20 6725 |
. . . . . . . . 9
⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) = ∅ |
| 57 | 55, 56 | syl6eq 2672 |
. . . . . . . 8
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) →
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) = ∅) |
| 58 | 57 | rneqd 5353 |
. . . . . . 7
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) → ran
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) = ran ∅) |
| 59 | | rn0 5377 |
. . . . . . 7
⊢ ran
∅ = ∅ |
| 60 | 58, 59 | syl6eq 2672 |
. . . . . 6
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) → ran
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) = ∅) |
| 61 | 60 | mpt2eq3dva 6719 |
. . . . 5
⊢ (¬
𝐺 ∈ V → (𝑡 ∈ 𝒫
(Base‘𝐺), 𝑢 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦
∅)) |
| 62 | 33, 61 | syl5eq 2668 |
. . . 4
⊢ (¬
𝐺 ∈ V →
(LSSum‘𝑂) = (𝑡 ∈ 𝒫
(Base‘𝐺), 𝑢 ∈ 𝒫
(Base‘𝐺) ↦
∅)) |
| 63 | 62 | oveqd 6667 |
. . 3
⊢ (¬
𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈)) |
| 64 | | fvprc 6185 |
. . . . . 6
⊢ (¬
𝐺 ∈ V →
(LSSum‘𝐺) =
∅) |
| 65 | 3, 64 | syl5eq 2668 |
. . . . 5
⊢ (¬
𝐺 ∈ V → ⊕ =
∅) |
| 66 | 65 | oveqd 6667 |
. . . 4
⊢ (¬
𝐺 ∈ V → (𝑈 ⊕ 𝑇) = (𝑈∅𝑇)) |
| 67 | | 0ov 6682 |
. . . 4
⊢ (𝑈∅𝑇) = ∅ |
| 68 | 66, 67 | syl6eq 2672 |
. . 3
⊢ (¬
𝐺 ∈ V → (𝑈 ⊕ 𝑇) = ∅) |
| 69 | 45, 63, 68 | 3eqtr4a 2682 |
. 2
⊢ (¬
𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑈 ⊕ 𝑇)) |
| 70 | 37, 69 | pm2.61i 176 |
1
⊢ (𝑇(LSSum‘𝑂)𝑈) = (𝑈 ⊕ 𝑇) |