MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacosupp Structured version   Visualization version   GIF version

Theorem imacosupp 7335
Description: The image of the support of the composition of two functions is the support of the outer function. (Contributed by AV, 30-May-2019.)
Assertion
Ref Expression
imacosupp ((𝐹𝑉𝐺𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍)))

Proof of Theorem imacosupp
StepHypRef Expression
1 cnvco 5308 . . . . . . . 8 (𝐹𝐺) = (𝐺𝐹)
21imaeq1i 5463 . . . . . . 7 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐺𝐹) “ (V ∖ {𝑍}))
3 imaco 5640 . . . . . . 7 ((𝐺𝐹) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
42, 3eqtri 2644 . . . . . 6 ((𝐹𝐺) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
54imaeq2i 5464 . . . . 5 (𝐺 “ ((𝐹𝐺) “ (V ∖ {𝑍}))) = (𝐺 “ (𝐺 “ (𝐹 “ (V ∖ {𝑍}))))
6 funforn 6122 . . . . . . . 8 (Fun 𝐺𝐺:dom 𝐺onto→ran 𝐺)
76biimpi 206 . . . . . . 7 (Fun 𝐺𝐺:dom 𝐺onto→ran 𝐺)
87ad2antrl 764 . . . . . 6 (((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → 𝐺:dom 𝐺onto→ran 𝐺)
9 simpl 473 . . . . . . . . . . . . 13 ((𝐹𝑉𝐺𝑊) → 𝐹𝑉)
109anim2i 593 . . . . . . . . . . . 12 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝑍 ∈ V ∧ 𝐹𝑉))
1110ancomd 467 . . . . . . . . . . 11 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝐹𝑉𝑍 ∈ V))
12 suppimacnv 7306 . . . . . . . . . . 11 ((𝐹𝑉𝑍 ∈ V) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
1311, 12syl 17 . . . . . . . . . 10 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
1413sseq1d 3632 . . . . . . . . 9 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹 supp 𝑍) ⊆ ran 𝐺 ↔ (𝐹 “ (V ∖ {𝑍})) ⊆ ran 𝐺))
1514biimpd 219 . . . . . . . 8 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹 supp 𝑍) ⊆ ran 𝐺 → (𝐹 “ (V ∖ {𝑍})) ⊆ ran 𝐺))
1615adantld 483 . . . . . . 7 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐹 “ (V ∖ {𝑍})) ⊆ ran 𝐺))
1716imp 445 . . . . . 6 (((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → (𝐹 “ (V ∖ {𝑍})) ⊆ ran 𝐺)
18 foimacnv 6154 . . . . . 6 ((𝐺:dom 𝐺onto→ran 𝐺 ∧ (𝐹 “ (V ∖ {𝑍})) ⊆ ran 𝐺) → (𝐺 “ (𝐺 “ (𝐹 “ (V ∖ {𝑍})))) = (𝐹 “ (V ∖ {𝑍})))
198, 17, 18syl2anc 693 . . . . 5 (((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → (𝐺 “ (𝐺 “ (𝐹 “ (V ∖ {𝑍})))) = (𝐹 “ (V ∖ {𝑍})))
205, 19syl5eq 2668 . . . 4 (((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → (𝐺 “ ((𝐹𝐺) “ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
21 coexg 7117 . . . . . . . . 9 ((𝐹𝑉𝐺𝑊) → (𝐹𝐺) ∈ V)
2221anim2i 593 . . . . . . . 8 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝑍 ∈ V ∧ (𝐹𝐺) ∈ V))
2322ancomd 467 . . . . . . 7 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V))
24 suppimacnv 7306 . . . . . . 7 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
2523, 24syl 17 . . . . . 6 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
2625imaeq2d 5466 . . . . 5 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐺 “ ((𝐹𝐺) “ (V ∖ {𝑍}))))
2726adantr 481 . . . 4 (((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐺 “ ((𝐹𝐺) “ (V ∖ {𝑍}))))
2813adantr 481 . . . 4 (((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
2920, 27, 283eqtr4d 2666 . . 3 (((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍))
3029exp31 630 . 2 (𝑍 ∈ V → ((𝐹𝑉𝐺𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍))))
31 ima0 5481 . . . 4 (𝐺 “ ∅) = ∅
32 id 22 . . . . . . 7 𝑍 ∈ V → ¬ 𝑍 ∈ V)
3332intnand 962 . . . . . 6 𝑍 ∈ V → ¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V))
34 supp0prc 7298 . . . . . 6 (¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ∅)
3533, 34syl 17 . . . . 5 𝑍 ∈ V → ((𝐹𝐺) supp 𝑍) = ∅)
3635imaeq2d 5466 . . . 4 𝑍 ∈ V → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐺 “ ∅))
3732intnand 962 . . . . 5 𝑍 ∈ V → ¬ (𝐹 ∈ V ∧ 𝑍 ∈ V))
38 supp0prc 7298 . . . . 5 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅)
3937, 38syl 17 . . . 4 𝑍 ∈ V → (𝐹 supp 𝑍) = ∅)
4031, 36, 393eqtr4a 2682 . . 3 𝑍 ∈ V → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍))
41402a1d 26 . 2 𝑍 ∈ V → ((𝐹𝑉𝐺𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍))))
4230, 41pm2.61i 176 1 ((𝐹𝑉𝐺𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  wss 3574  c0 3915  {csn 4177  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  ccom 5118  Fun wfun 5882  ontowfo 5886  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  gsumval3lem1  18306  gsumval3lem2  18307
  Copyright terms: Public domain W3C validator