MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsneqopsn Structured version   Visualization version   GIF version

Theorem funsneqopsn 6417
Description: A singleton of an ordered pair is an ordered pair of equal singletons if the components are equal. (Contributed by AV, 24-Sep-2020.)
Hypotheses
Ref Expression
funsndifnop.a 𝐴 ∈ V
funsndifnop.b 𝐵 ∈ V
funsndifnop.g 𝐺 = {⟨𝐴, 𝐵⟩}
Assertion
Ref Expression
funsneqopsn (𝐴 = 𝐵𝐺 = ⟨{𝐴}, {𝐴}⟩)

Proof of Theorem funsneqopsn
StepHypRef Expression
1 opeq2 4403 . . . 4 (𝐴 = 𝐵 → ⟨𝐴, 𝐴⟩ = ⟨𝐴, 𝐵⟩)
21sneqd 4189 . . 3 (𝐴 = 𝐵 → {⟨𝐴, 𝐴⟩} = {⟨𝐴, 𝐵⟩})
3 funsndifnop.g . . 3 𝐺 = {⟨𝐴, 𝐵⟩}
42, 3syl6reqr 2675 . 2 (𝐴 = 𝐵𝐺 = {⟨𝐴, 𝐴⟩})
5 eqid 2622 . . . 4 𝐴 = 𝐴
6 eqid 2622 . . . 4 {𝐴} = {𝐴}
75, 6, 63pm3.2i 1239 . . 3 (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴})
8 eqeq1 2626 . . . 4 (𝐺 = {⟨𝐴, 𝐴⟩} → (𝐺 = ⟨{𝐴}, {𝐴}⟩ ↔ {⟨𝐴, 𝐴⟩} = ⟨{𝐴}, {𝐴}⟩))
9 funsndifnop.a . . . . 5 𝐴 ∈ V
10 snex 4908 . . . . 5 {𝐴} ∈ V
119, 9, 10, 10snopeqop 4969 . . . 4 ({⟨𝐴, 𝐴⟩} = ⟨{𝐴}, {𝐴}⟩ ↔ (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴}))
128, 11syl6bb 276 . . 3 (𝐺 = {⟨𝐴, 𝐴⟩} → (𝐺 = ⟨{𝐴}, {𝐴}⟩ ↔ (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴})))
137, 12mpbiri 248 . 2 (𝐺 = {⟨𝐴, 𝐴⟩} → 𝐺 = ⟨{𝐴}, {𝐴}⟩)
144, 13syl 17 1 (𝐴 = 𝐵𝐺 = ⟨{𝐴}, {𝐴}⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177  cop 4183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184
This theorem is referenced by:  funsneqop  6418  vtxvalsnop  25933  iedgvalsnop  25934
  Copyright terms: Public domain W3C validator