![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snopeqop | Structured version Visualization version GIF version |
Description: Equivalence for an ordered pair equal to a singleton of an ordered pair. (Contributed by AV, 18-Sep-2020.) |
Ref | Expression |
---|---|
snopeqop.a | ⊢ 𝐴 ∈ V |
snopeqop.b | ⊢ 𝐵 ∈ V |
snopeqop.c | ⊢ 𝐶 ∈ V |
snopeqop.d | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
snopeqop | ⊢ ({〈𝐴, 𝐵〉} = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snopeqop.a | . . . 4 ⊢ 𝐴 ∈ V | |
2 | snopeqop.b | . . . 4 ⊢ 𝐵 ∈ V | |
3 | snopeqop.c | . . . 4 ⊢ 𝐶 ∈ V | |
4 | 1, 2, 3 | opeqsn 4967 | . . 3 ⊢ (〈𝐴, 𝐵〉 = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})) |
5 | 4 | anbi2i 730 | . 2 ⊢ ((𝐶 = 𝐷 ∧ 〈𝐴, 𝐵〉 = {𝐶}) ↔ (𝐶 = 𝐷 ∧ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴}))) |
6 | eqcom 2629 | . . 3 ⊢ ({〈𝐴, 𝐵〉} = 〈𝐶, 𝐷〉 ↔ 〈𝐶, 𝐷〉 = {〈𝐴, 𝐵〉}) | |
7 | snopeqop.d | . . . 4 ⊢ 𝐷 ∈ V | |
8 | opex 4932 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
9 | 3, 7, 8 | opeqsn 4967 | . . 3 ⊢ (〈𝐶, 𝐷〉 = {〈𝐴, 𝐵〉} ↔ (𝐶 = 𝐷 ∧ 〈𝐴, 𝐵〉 = {𝐶})) |
10 | 6, 9 | bitri 264 | . 2 ⊢ ({〈𝐴, 𝐵〉} = 〈𝐶, 𝐷〉 ↔ (𝐶 = 𝐷 ∧ 〈𝐴, 𝐵〉 = {𝐶})) |
11 | 3anan12 1051 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴}) ↔ (𝐶 = 𝐷 ∧ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴}))) | |
12 | 5, 10, 11 | 3bitr4i 292 | 1 ⊢ ({〈𝐴, 𝐵〉} = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 Vcvv 3200 {csn 4177 〈cop 4183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 |
This theorem is referenced by: funopsn 6413 funsneqopsn 6417 |
Copyright terms: Public domain | W3C validator |