![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvclss | Structured version Visualization version GIF version |
Description: Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995.) |
Ref | Expression |
---|---|
fvclss | ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ⊆ (ran 𝐹 ∪ {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2629 | . . . . . . . . . 10 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
2 | tz6.12i 6214 | . . . . . . . . . 10 ⊢ (𝑦 ≠ ∅ → ((𝐹‘𝑥) = 𝑦 → 𝑥𝐹𝑦)) | |
3 | 1, 2 | syl5bi 232 | . . . . . . . . 9 ⊢ (𝑦 ≠ ∅ → (𝑦 = (𝐹‘𝑥) → 𝑥𝐹𝑦)) |
4 | 3 | eximdv 1846 | . . . . . . . 8 ⊢ (𝑦 ≠ ∅ → (∃𝑥 𝑦 = (𝐹‘𝑥) → ∃𝑥 𝑥𝐹𝑦)) |
5 | vex 3203 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
6 | 5 | elrn 5366 | . . . . . . . 8 ⊢ (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 𝑥𝐹𝑦) |
7 | 4, 6 | syl6ibr 242 | . . . . . . 7 ⊢ (𝑦 ≠ ∅ → (∃𝑥 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ ran 𝐹)) |
8 | 7 | com12 32 | . . . . . 6 ⊢ (∃𝑥 𝑦 = (𝐹‘𝑥) → (𝑦 ≠ ∅ → 𝑦 ∈ ran 𝐹)) |
9 | 8 | necon1bd 2812 | . . . . 5 ⊢ (∃𝑥 𝑦 = (𝐹‘𝑥) → (¬ 𝑦 ∈ ran 𝐹 → 𝑦 = ∅)) |
10 | velsn 4193 | . . . . 5 ⊢ (𝑦 ∈ {∅} ↔ 𝑦 = ∅) | |
11 | 9, 10 | syl6ibr 242 | . . . 4 ⊢ (∃𝑥 𝑦 = (𝐹‘𝑥) → (¬ 𝑦 ∈ ran 𝐹 → 𝑦 ∈ {∅})) |
12 | 11 | orrd 393 | . . 3 ⊢ (∃𝑥 𝑦 = (𝐹‘𝑥) → (𝑦 ∈ ran 𝐹 ∨ 𝑦 ∈ {∅})) |
13 | 12 | ss2abi 3674 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ⊆ {𝑦 ∣ (𝑦 ∈ ran 𝐹 ∨ 𝑦 ∈ {∅})} |
14 | df-un 3579 | . 2 ⊢ (ran 𝐹 ∪ {∅}) = {𝑦 ∣ (𝑦 ∈ ran 𝐹 ∨ 𝑦 ∈ {∅})} | |
15 | 13, 14 | sseqtr4i 3638 | 1 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ⊆ (ran 𝐹 ∪ {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 383 = wceq 1483 ∃wex 1704 ∈ wcel 1990 {cab 2608 ≠ wne 2794 ∪ cun 3572 ⊆ wss 3574 ∅c0 3915 {csn 4177 class class class wbr 4653 ran crn 5115 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-cnv 5122 df-dm 5124 df-rn 5125 df-iota 5851 df-fv 5896 |
This theorem is referenced by: fvclex 7138 |
Copyright terms: Public domain | W3C validator |