MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvclss Structured version   Visualization version   GIF version

Theorem fvclss 6500
Description: Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995.)
Assertion
Ref Expression
fvclss {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ (ran 𝐹 ∪ {∅})
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem fvclss
StepHypRef Expression
1 eqcom 2629 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
2 tz6.12i 6214 . . . . . . . . . 10 (𝑦 ≠ ∅ → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
31, 2syl5bi 232 . . . . . . . . 9 (𝑦 ≠ ∅ → (𝑦 = (𝐹𝑥) → 𝑥𝐹𝑦))
43eximdv 1846 . . . . . . . 8 (𝑦 ≠ ∅ → (∃𝑥 𝑦 = (𝐹𝑥) → ∃𝑥 𝑥𝐹𝑦))
5 vex 3203 . . . . . . . . 9 𝑦 ∈ V
65elrn 5366 . . . . . . . 8 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 𝑥𝐹𝑦)
74, 6syl6ibr 242 . . . . . . 7 (𝑦 ≠ ∅ → (∃𝑥 𝑦 = (𝐹𝑥) → 𝑦 ∈ ran 𝐹))
87com12 32 . . . . . 6 (∃𝑥 𝑦 = (𝐹𝑥) → (𝑦 ≠ ∅ → 𝑦 ∈ ran 𝐹))
98necon1bd 2812 . . . . 5 (∃𝑥 𝑦 = (𝐹𝑥) → (¬ 𝑦 ∈ ran 𝐹𝑦 = ∅))
10 velsn 4193 . . . . 5 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
119, 10syl6ibr 242 . . . 4 (∃𝑥 𝑦 = (𝐹𝑥) → (¬ 𝑦 ∈ ran 𝐹𝑦 ∈ {∅}))
1211orrd 393 . . 3 (∃𝑥 𝑦 = (𝐹𝑥) → (𝑦 ∈ ran 𝐹𝑦 ∈ {∅}))
1312ss2abi 3674 . 2 {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ {𝑦 ∣ (𝑦 ∈ ran 𝐹𝑦 ∈ {∅})}
14 df-un 3579 . 2 (ran 𝐹 ∪ {∅}) = {𝑦 ∣ (𝑦 ∈ ran 𝐹𝑦 ∈ {∅})}
1513, 14sseqtr4i 3638 1 {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ (ran 𝐹 ∪ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 383   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wne 2794  cun 3572  wss 3574  c0 3915  {csn 4177   class class class wbr 4653  ran crn 5115  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-cnv 5122  df-dm 5124  df-rn 5125  df-iota 5851  df-fv 5896
This theorem is referenced by:  fvclex  7138
  Copyright terms: Public domain W3C validator