MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idref Structured version   Visualization version   GIF version

Theorem idref 6499
Description: TODO: This is the same as issref 5509 (which has a much longer proof). Should we replace issref 5509 with this one? - NM 9-May-2016.

Two ways to state a relation is reflexive. (Adapted from Tarski.) (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Proof modification is discouraged.)

Assertion
Ref Expression
idref (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem idref
StepHypRef Expression
1 eqid 2622 . . . 4 (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) = (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩)
21fmpt 6381 . . 3 (∀𝑥𝐴𝑥, 𝑥⟩ ∈ 𝑅 ↔ (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴𝑅)
3 opex 4932 . . . . 5 𝑥, 𝑥⟩ ∈ V
43, 1fnmpti 6022 . . . 4 (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) Fn 𝐴
5 df-f 5892 . . . 4 ((𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴𝑅 ↔ ((𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) Fn 𝐴 ∧ ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅))
64, 5mpbiran 953 . . 3 ((𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴𝑅 ↔ ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅)
72, 6bitri 264 . 2 (∀𝑥𝐴𝑥, 𝑥⟩ ∈ 𝑅 ↔ ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅)
8 df-br 4654 . . 3 (𝑥𝑅𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅)
98ralbii 2980 . 2 (∀𝑥𝐴 𝑥𝑅𝑥 ↔ ∀𝑥𝐴𝑥, 𝑥⟩ ∈ 𝑅)
10 mptresid 5456 . . . 4 (𝑥𝐴𝑥) = ( I ↾ 𝐴)
11 vex 3203 . . . . 5 𝑥 ∈ V
1211fnasrn 6411 . . . 4 (𝑥𝐴𝑥) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩)
1310, 12eqtr3i 2646 . . 3 ( I ↾ 𝐴) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩)
1413sseq1i 3629 . 2 (( I ↾ 𝐴) ⊆ 𝑅 ↔ ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅)
157, 9, 143bitr4ri 293 1 (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wcel 1990  wral 2912  wss 3574  cop 4183   class class class wbr 4653  cmpt 4729   I cid 5023  ran crn 5115  cres 5116   Fn wfn 5883  wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  retos  19964  filnetlem2  32374
  Copyright terms: Public domain W3C validator