Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fveqsb Structured version   Visualization version   GIF version

Theorem fveqsb 38657
Description: Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.)
Hypotheses
Ref Expression
fveqsb.2 (𝑥 = (𝐹𝐴) → (𝜑𝜓))
fveqsb.3 𝑥𝜓
Assertion
Ref Expression
fveqsb (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem fveqsb
StepHypRef Expression
1 fvex 6201 . . 3 (𝐹𝐴) ∈ V
2 fveqsb.3 . . . 4 𝑥𝜓
3 fveqsb.2 . . . 4 (𝑥 = (𝐹𝐴) → (𝜑𝜓))
42, 3sbciegf 3467 . . 3 ((𝐹𝐴) ∈ V → ([(𝐹𝐴) / 𝑥]𝜑𝜓))
51, 4ax-mp 5 . 2 ([(𝐹𝐴) / 𝑥]𝜑𝜓)
6 fvsb 38656 . 2 (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
75, 6syl5bbr 274 1 (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wex 1704  wnf 1708  wcel 1990  ∃!weu 2470  Vcvv 3200  [wsbc 3435   class class class wbr 4653  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator