Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fveqsb Structured version   Visualization version   Unicode version

Theorem fveqsb 38657
Description: Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.)
Hypotheses
Ref Expression
fveqsb.2  |-  ( x  =  ( F `  A )  ->  ( ph 
<->  ps ) )
fveqsb.3  |-  F/ x ps
Assertion
Ref Expression
fveqsb  |-  ( E! y  A F y  ->  ( ps  <->  E. x
( A. y ( A F y  <->  y  =  x )  /\  ph ) ) )
Distinct variable groups:    x, A, y    x, F, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem fveqsb
StepHypRef Expression
1 fvex 6201 . . 3  |-  ( F `
 A )  e. 
_V
2 fveqsb.3 . . . 4  |-  F/ x ps
3 fveqsb.2 . . . 4  |-  ( x  =  ( F `  A )  ->  ( ph 
<->  ps ) )
42, 3sbciegf 3467 . . 3  |-  ( ( F `  A )  e.  _V  ->  ( [. ( F `  A
)  /  x ]. ph  <->  ps ) )
51, 4ax-mp 5 . 2  |-  ( [. ( F `  A )  /  x ]. ph  <->  ps )
6 fvsb 38656 . 2  |-  ( E! y  A F y  ->  ( [. ( F `  A )  /  x ]. ph  <->  E. x
( A. y ( A F y  <->  y  =  x )  /\  ph ) ) )
75, 6syl5bbr 274 1  |-  ( E! y  A F y  ->  ( ps  <->  E. x
( A. y ( A F y  <->  y  =  x )  /\  ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704   F/wnf 1708    e. wcel 1990   E!weu 2470   _Vcvv 3200   [.wsbc 3435   class class class wbr 4653   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator