MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvopab6 Structured version   Visualization version   GIF version

Theorem fvopab6 6310
Description: Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
fvopab6.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐵)}
fvopab6.2 (𝑥 = 𝐴 → (𝜑𝜓))
fvopab6.3 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
fvopab6 ((𝐴𝐷𝐶𝑅𝜓) → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜓,𝑥,𝑦   𝑦,𝐵   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fvopab6
StepHypRef Expression
1 elex 3212 . . 3 (𝐴𝐷𝐴 ∈ V)
2 fvopab6.2 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
3 fvopab6.3 . . . . . 6 (𝑥 = 𝐴𝐵 = 𝐶)
43eqeq2d 2632 . . . . 5 (𝑥 = 𝐴 → (𝑦 = 𝐵𝑦 = 𝐶))
52, 4anbi12d 747 . . . 4 (𝑥 = 𝐴 → ((𝜑𝑦 = 𝐵) ↔ (𝜓𝑦 = 𝐶)))
6 iba 524 . . . . 5 (𝑦 = 𝐶 → (𝜓 ↔ (𝜓𝑦 = 𝐶)))
76bicomd 213 . . . 4 (𝑦 = 𝐶 → ((𝜓𝑦 = 𝐶) ↔ 𝜓))
8 moeq 3382 . . . . . 6 ∃*𝑦 𝑦 = 𝐵
98moani 2525 . . . . 5 ∃*𝑦(𝜑𝑦 = 𝐵)
109a1i 11 . . . 4 (𝑥 ∈ V → ∃*𝑦(𝜑𝑦 = 𝐵))
11 fvopab6.1 . . . . 5 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐵)}
12 vex 3203 . . . . . . 7 𝑥 ∈ V
1312biantrur 527 . . . . . 6 ((𝜑𝑦 = 𝐵) ↔ (𝑥 ∈ V ∧ (𝜑𝑦 = 𝐵)))
1413opabbii 4717 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ (𝜑𝑦 = 𝐵))}
1511, 14eqtri 2644 . . . 4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ (𝜑𝑦 = 𝐵))}
165, 7, 10, 15fvopab3ig 6278 . . 3 ((𝐴 ∈ V ∧ 𝐶𝑅) → (𝜓 → (𝐹𝐴) = 𝐶))
171, 16sylan 488 . 2 ((𝐴𝐷𝐶𝑅) → (𝜓 → (𝐹𝐴) = 𝐶))
18173impia 1261 1 ((𝐴𝐷𝐶𝑅𝜓) → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  ∃*wmo 2471  Vcvv 3200  {copab 4712  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator