![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvopab6 | Structured version Visualization version GIF version |
Description: Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fvopab6.1 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐵)} |
fvopab6.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
fvopab6.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
fvopab6 | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅 ∧ 𝜓) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3212 | . . 3 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ V) | |
2 | fvopab6.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | fvopab6.3 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
4 | 3 | eqeq2d 2632 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
5 | 2, 4 | anbi12d 747 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝜑 ∧ 𝑦 = 𝐵) ↔ (𝜓 ∧ 𝑦 = 𝐶))) |
6 | iba 524 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝜓 ↔ (𝜓 ∧ 𝑦 = 𝐶))) | |
7 | 6 | bicomd 213 | . . . 4 ⊢ (𝑦 = 𝐶 → ((𝜓 ∧ 𝑦 = 𝐶) ↔ 𝜓)) |
8 | moeq 3382 | . . . . . 6 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
9 | 8 | moani 2525 | . . . . 5 ⊢ ∃*𝑦(𝜑 ∧ 𝑦 = 𝐵) |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ V → ∃*𝑦(𝜑 ∧ 𝑦 = 𝐵)) |
11 | fvopab6.1 | . . . . 5 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐵)} | |
12 | vex 3203 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
13 | 12 | biantrur 527 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ V ∧ (𝜑 ∧ 𝑦 = 𝐵))) |
14 | 13 | opabbii 4717 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ (𝜑 ∧ 𝑦 = 𝐵))} |
15 | 11, 14 | eqtri 2644 | . . . 4 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ (𝜑 ∧ 𝑦 = 𝐵))} |
16 | 5, 7, 10, 15 | fvopab3ig 6278 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ 𝑅) → (𝜓 → (𝐹‘𝐴) = 𝐶)) |
17 | 1, 16 | sylan 488 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝜓 → (𝐹‘𝐴) = 𝐶)) |
18 | 17 | 3impia 1261 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅 ∧ 𝜓) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∃*wmo 2471 Vcvv 3200 {copab 4712 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |