![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > htalem | Structured version Visualization version GIF version |
Description: Lemma for defining an emulation of Hilbert's epsilon. Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem is equivalent to Hilbert's "transfinite axiom," described on that page, with the additional 𝑅 We 𝐴 antecedent. The element 𝐵 is the epsilon that the theorem emulates. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
htalem.1 | ⊢ 𝐴 ∈ V |
htalem.2 | ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |
Ref | Expression |
---|---|
htalem | ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | htalem.2 | . 2 ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | |
2 | simpl 473 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝑅 We 𝐴) | |
3 | htalem.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
4 | 3 | a1i 11 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V) |
5 | ssid 3624 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
6 | 5 | a1i 11 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ 𝐴) |
7 | simpr 477 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
8 | wereu 5110 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ (𝐴 ∈ V ∧ 𝐴 ⊆ 𝐴 ∧ 𝐴 ≠ ∅)) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | |
9 | 2, 4, 6, 7, 8 | syl13anc 1328 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |
10 | riotacl 6625 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) ∈ 𝐴) | |
11 | 9, 10 | syl 17 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) ∈ 𝐴) |
12 | 1, 11 | syl5eqel 2705 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∃!wreu 2914 Vcvv 3200 ⊆ wss 3574 ∅c0 3915 class class class wbr 4653 We wwe 5072 ℩crio 6610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-iota 5851 df-riota 6611 |
This theorem is referenced by: hta 8760 |
Copyright terms: Public domain | W3C validator |