| Step | Hyp | Ref
| Expression |
| 1 | | karden.1 |
. . . . . . . 8
⊢ 𝐴 ∈ V |
| 2 | 1 | enref 7988 |
. . . . . . 7
⊢ 𝐴 ≈ 𝐴 |
| 3 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑤 = 𝐴 → (𝑤 ≈ 𝐴 ↔ 𝐴 ≈ 𝐴)) |
| 4 | 1, 3 | spcev 3300 |
. . . . . . 7
⊢ (𝐴 ≈ 𝐴 → ∃𝑤 𝑤 ≈ 𝐴) |
| 5 | 2, 4 | ax-mp 5 |
. . . . . 6
⊢
∃𝑤 𝑤 ≈ 𝐴 |
| 6 | | abn0 3954 |
. . . . . 6
⊢ ({𝑤 ∣ 𝑤 ≈ 𝐴} ≠ ∅ ↔ ∃𝑤 𝑤 ≈ 𝐴) |
| 7 | 5, 6 | mpbir 221 |
. . . . 5
⊢ {𝑤 ∣ 𝑤 ≈ 𝐴} ≠ ∅ |
| 8 | | scott0 8749 |
. . . . . 6
⊢ ({𝑤 ∣ 𝑤 ≈ 𝐴} = ∅ ↔ {𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} = ∅) |
| 9 | 8 | necon3bii 2846 |
. . . . 5
⊢ ({𝑤 ∣ 𝑤 ≈ 𝐴} ≠ ∅ ↔ {𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} ≠ ∅) |
| 10 | 7, 9 | mpbi 220 |
. . . 4
⊢ {𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} ≠ ∅ |
| 11 | | rabn0 3958 |
. . . 4
⊢ ({𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} ≠ ∅ ↔ ∃𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴}∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)) |
| 12 | 10, 11 | mpbi 220 |
. . 3
⊢
∃𝑧 ∈
{𝑤 ∣ 𝑤 ≈ 𝐴}∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) |
| 13 | | vex 3203 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
| 14 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → (𝑤 ≈ 𝐴 ↔ 𝑧 ≈ 𝐴)) |
| 15 | 13, 14 | elab 3350 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ↔ 𝑧 ≈ 𝐴) |
| 16 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (𝑤 ≈ 𝐴 ↔ 𝑦 ≈ 𝐴)) |
| 17 | 16 | ralab 3367 |
. . . . . . 7
⊢
(∀𝑦 ∈
{𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) |
| 18 | 15, 17 | anbi12i 733 |
. . . . . 6
⊢ ((𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ∧ ∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)) ↔ (𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦)))) |
| 19 | | simpl 473 |
. . . . . . . . 9
⊢ ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧 ≈ 𝐴) |
| 20 | 19 | a1i 11 |
. . . . . . . 8
⊢ (𝐶 = 𝐷 → ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧 ≈ 𝐴)) |
| 21 | | karden.3 |
. . . . . . . . . . . 12
⊢ 𝐶 = {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
| 22 | | karden.4 |
. . . . . . . . . . . 12
⊢ 𝐷 = {𝑥 ∣ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
| 23 | 21, 22 | eqeq12i 2636 |
. . . . . . . . . . 11
⊢ (𝐶 = 𝐷 ↔ {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = {𝑥 ∣ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))}) |
| 24 | | abbi 2737 |
. . . . . . . . . . 11
⊢
(∀𝑥((𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) ↔ {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = {𝑥 ∣ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))}) |
| 25 | 23, 24 | bitr4i 267 |
. . . . . . . . . 10
⊢ (𝐶 = 𝐷 ↔ ∀𝑥((𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))))) |
| 26 | | breq1 4656 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥 ≈ 𝐴 ↔ 𝑧 ≈ 𝐴)) |
| 27 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (rank‘𝑥) = (rank‘𝑧)) |
| 28 | 27 | sseq1d 3632 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑧) ⊆ (rank‘𝑦))) |
| 29 | 28 | imbi2d 330 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → ((𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦)))) |
| 30 | 29 | albidv 1849 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦)))) |
| 31 | 26, 30 | anbi12d 747 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))))) |
| 32 | | breq1 4656 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥 ≈ 𝐵 ↔ 𝑧 ≈ 𝐵)) |
| 33 | 28 | imbi2d 330 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → ((𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦)))) |
| 34 | 33 | albidv 1849 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦)))) |
| 35 | 32, 34 | anbi12d 747 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑧 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))))) |
| 36 | 31, 35 | bibi12d 335 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (((𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) ↔ ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) ↔ (𝑧 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦)))))) |
| 37 | 36 | spv 2260 |
. . . . . . . . . 10
⊢
(∀𝑥((𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) → ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) ↔ (𝑧 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))))) |
| 38 | 25, 37 | sylbi 207 |
. . . . . . . . 9
⊢ (𝐶 = 𝐷 → ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) ↔ (𝑧 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))))) |
| 39 | | simpl 473 |
. . . . . . . . 9
⊢ ((𝑧 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧 ≈ 𝐵) |
| 40 | 38, 39 | syl6bi 243 |
. . . . . . . 8
⊢ (𝐶 = 𝐷 → ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧 ≈ 𝐵)) |
| 41 | 20, 40 | jcad 555 |
. . . . . . 7
⊢ (𝐶 = 𝐷 → ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → (𝑧 ≈ 𝐴 ∧ 𝑧 ≈ 𝐵))) |
| 42 | | ensym 8005 |
. . . . . . . 8
⊢ (𝑧 ≈ 𝐴 → 𝐴 ≈ 𝑧) |
| 43 | | entr 8008 |
. . . . . . . 8
⊢ ((𝐴 ≈ 𝑧 ∧ 𝑧 ≈ 𝐵) → 𝐴 ≈ 𝐵) |
| 44 | 42, 43 | sylan 488 |
. . . . . . 7
⊢ ((𝑧 ≈ 𝐴 ∧ 𝑧 ≈ 𝐵) → 𝐴 ≈ 𝐵) |
| 45 | 41, 44 | syl6 35 |
. . . . . 6
⊢ (𝐶 = 𝐷 → ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝐴 ≈ 𝐵)) |
| 46 | 18, 45 | syl5bi 232 |
. . . . 5
⊢ (𝐶 = 𝐷 → ((𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ∧ ∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)) → 𝐴 ≈ 𝐵)) |
| 47 | 46 | expd 452 |
. . . 4
⊢ (𝐶 = 𝐷 → (𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} → (∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) → 𝐴 ≈ 𝐵))) |
| 48 | 47 | rexlimdv 3030 |
. . 3
⊢ (𝐶 = 𝐷 → (∃𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴}∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) → 𝐴 ≈ 𝐵)) |
| 49 | 12, 48 | mpi 20 |
. 2
⊢ (𝐶 = 𝐷 → 𝐴 ≈ 𝐵) |
| 50 | | enen2 8101 |
. . . . 5
⊢ (𝐴 ≈ 𝐵 → (𝑥 ≈ 𝐴 ↔ 𝑥 ≈ 𝐵)) |
| 51 | | enen2 8101 |
. . . . . . 7
⊢ (𝐴 ≈ 𝐵 → (𝑦 ≈ 𝐴 ↔ 𝑦 ≈ 𝐵)) |
| 52 | 51 | imbi1d 331 |
. . . . . 6
⊢ (𝐴 ≈ 𝐵 → ((𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) |
| 53 | 52 | albidv 1849 |
. . . . 5
⊢ (𝐴 ≈ 𝐵 → (∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) |
| 54 | 50, 53 | anbi12d 747 |
. . . 4
⊢ (𝐴 ≈ 𝐵 → ((𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))))) |
| 55 | 54 | abbidv 2741 |
. . 3
⊢ (𝐴 ≈ 𝐵 → {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = {𝑥 ∣ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))}) |
| 56 | 55, 21, 22 | 3eqtr4g 2681 |
. 2
⊢ (𝐴 ≈ 𝐵 → 𝐶 = 𝐷) |
| 57 | 49, 56 | impbii 199 |
1
⊢ (𝐶 = 𝐷 ↔ 𝐴 ≈ 𝐵) |