MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wereu Structured version   Visualization version   GIF version

Theorem wereu 5110
Description: A subset of a well-ordered set has a unique minimal element. (Contributed by NM, 18-Mar-1997.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
wereu ((𝑅 We 𝐴 ∧ (𝐵𝑉𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem wereu
StepHypRef Expression
1 wefr 5104 . . 3 (𝑅 We 𝐴𝑅 Fr 𝐴)
2 fri 5076 . . . . . 6 (((𝐵𝑉𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
32exp32 631 . . . . 5 ((𝐵𝑉𝑅 Fr 𝐴) → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)))
43expcom 451 . . . 4 (𝑅 Fr 𝐴 → (𝐵𝑉 → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))))
543imp2 1282 . . 3 ((𝑅 Fr 𝐴 ∧ (𝐵𝑉𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
61, 5sylan 488 . 2 ((𝑅 We 𝐴 ∧ (𝐵𝑉𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
7 weso 5105 . . . . 5 (𝑅 We 𝐴𝑅 Or 𝐴)
8 soss 5053 . . . . 5 (𝐵𝐴 → (𝑅 Or 𝐴𝑅 Or 𝐵))
97, 8mpan9 486 . . . 4 ((𝑅 We 𝐴𝐵𝐴) → 𝑅 Or 𝐵)
10 somo 5069 . . . 4 (𝑅 Or 𝐵 → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
119, 10syl 17 . . 3 ((𝑅 We 𝐴𝐵𝐴) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
12113ad2antr2 1227 . 2 ((𝑅 We 𝐴 ∧ (𝐵𝑉𝐵𝐴𝐵 ≠ ∅)) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
13 reu5 3159 . 2 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
146, 12, 13sylanbrc 698 1 ((𝑅 We 𝐴 ∧ (𝐵𝑉𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037  wcel 1990  wne 2794  wral 2912  wrex 2913  ∃!wreu 2914  ∃*wrmo 2915  wss 3574  c0 3915   class class class wbr 4653   Or wor 5034   Fr wfr 5070   We wwe 5072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-po 5035  df-so 5036  df-fr 5073  df-we 5075
This theorem is referenced by:  htalem  8759  zorn2lem1  9318  dyadmax  23366  wessf1ornlem  39371
  Copyright terms: Public domain W3C validator