| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvcomi | Structured version Visualization version GIF version | ||
| Description: Commutation of vector addition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvaddcl.1 | ⊢ 𝐴 ∈ ℋ |
| hvaddcl.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| hvcomi | ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvaddcl.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
| 2 | hvaddcl.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
| 3 | ax-hvcom 27858 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 708 | 1 ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1483 ∈ wcel 1990 (class class class)co 6650 ℋchil 27776 +ℎ cva 27777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-hvcom 27858 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: hvadd12i 27914 hvnegdii 27919 norm3difi 28004 normpar2i 28013 nonbooli 28510 lnophmlem2 28876 |
| Copyright terms: Public domain | W3C validator |