HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvcom Structured version   Visualization version   GIF version

Axiom ax-hvcom 27858
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvcom ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Detailed syntax breakdown of Axiom ax-hvcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chil 27776 . . . 4 class
31, 2wcel 1990 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 1990 . . 3 wff 𝐵 ∈ ℋ
63, 5wa 384 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)
7 cva 27777 . . . 4 class +
81, 4, 7co 6650 . . 3 class (𝐴 + 𝐵)
94, 1, 7co 6650 . . 3 class (𝐵 + 𝐴)
108, 9wceq 1483 . 2 wff (𝐴 + 𝐵) = (𝐵 + 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
This axiom is referenced by:  hvcomi  27876  hvaddid2  27880  hvadd32  27891  hvadd12  27892  hvpncan2  27897  hvsub32  27902  hvaddcan2  27928  hilablo  28017  hhssabloi  28119  shscom  28178  pjhtheu2  28275  pjpjpre  28278  pjpo  28287  spanunsni  28438  chscllem4  28499  hoaddcomi  28631  pjimai  29035  superpos  29213  sumdmdii  29274  cdj3lem3  29297  cdj3lem3b  29299
  Copyright terms: Public domain W3C validator