![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hvcom | Structured version Visualization version GIF version |
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvcom | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | chil 27776 | . . . 4 class ℋ | |
3 | 1, 2 | wcel 1990 | . . 3 wff 𝐴 ∈ ℋ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 1990 | . . 3 wff 𝐵 ∈ ℋ |
6 | 3, 5 | wa 384 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) |
7 | cva 27777 | . . . 4 class +ℎ | |
8 | 1, 4, 7 | co 6650 | . . 3 class (𝐴 +ℎ 𝐵) |
9 | 4, 1, 7 | co 6650 | . . 3 class (𝐵 +ℎ 𝐴) |
10 | 8, 9 | wceq 1483 | . 2 wff (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvcomi 27876 hvaddid2 27880 hvadd32 27891 hvadd12 27892 hvpncan2 27897 hvsub32 27902 hvaddcan2 27928 hilablo 28017 hhssabloi 28119 shscom 28178 pjhtheu2 28275 pjpjpre 28278 pjpo 28287 spanunsni 28438 chscllem4 28499 hoaddcomi 28631 pjimai 29035 superpos 29213 sumdmdii 29274 cdj3lem3 29297 cdj3lem3b 29299 |
Copyright terms: Public domain | W3C validator |