![]() |
Metamath
Proof Explorer Theorem List (p. 279 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | chio 27801 | Extend class notation with Hilbert space identity operator. |
class Iop | ||
Syntax | cnop 27802 | Extend class notation with the operator norm function. |
class normop | ||
Syntax | ccop 27803 | Extend class notation with set of continuous Hilbert space operators. |
class ContOp | ||
Syntax | clo 27804 | Extend class notation with set of linear Hilbert space operators. |
class LinOp | ||
Syntax | cbo 27805 | Extend class notation with set of bounded linear operators. |
class BndLinOp | ||
Syntax | cuo 27806 | Extend class notation with set of unitary Hilbert space operators. |
class UniOp | ||
Syntax | cho 27807 | Extend class notation with set of Hermitian Hilbert space operators. |
class HrmOp | ||
Syntax | cnmf 27808 | Extend class notation with the functional norm function. |
class normfn | ||
Syntax | cnl 27809 | Extend class notation with the functional nullspace function. |
class null | ||
Syntax | ccnfn 27810 | Extend class notation with set of continuous Hilbert space functionals. |
class ContFn | ||
Syntax | clf 27811 | Extend class notation with set of linear Hilbert space functionals. |
class LinFn | ||
Syntax | cado 27812 | Extend class notation with Hilbert space adjoint function. |
class adjℎ | ||
Syntax | cbr 27813 | Extend class notation with the bra of a vector in Dirac bra-ket notation. |
class bra | ||
Syntax | ck 27814 | Extend class notation with the outer product of two vectors in Dirac bra-ket notation. |
class ketbra | ||
Syntax | cleo 27815 | Extend class notation with positive operator ordering. |
class ≤op | ||
Syntax | cei 27816 | Extend class notation with Hilbert space eigenvector function. |
class eigvec | ||
Syntax | cel 27817 | Extend class notation with Hilbert space eigenvalue function. |
class eigval | ||
Syntax | cspc 27818 | Extend class notation with the spectrum of an operator. |
class Lambda | ||
Syntax | cst 27819 | Extend class notation with set of states on a Hilbert lattice. |
class States | ||
Syntax | chst 27820 | Extend class notation with set of Hilbert-space-valued states on a Hilbert lattice. |
class CHStates | ||
Syntax | ccv 27821 | Extend class notation with the covers relation on a Hilbert lattice. |
class ⋖ℋ | ||
Syntax | cat 27822 | Extend class notation with set of atoms on a Hilbert lattice. |
class HAtoms | ||
Syntax | cmd 27823 | Extend class notation with the modular pair relation on a Hilbert lattice. |
class 𝑀ℋ | ||
Syntax | cdmd 27824 | Extend class notation with the dual modular pair relation on a Hilbert lattice. |
class 𝑀ℋ* | ||
Definition | df-hnorm 27825 | Define the function for the norm of a vector of Hilbert space. See normval 27981 for its value and normcl 27982 for its closure. Theorems norm-i-i 27990, norm-ii-i 27994, and norm-iii-i 27996 show it has the expected properties of a norm. In the literature, the norm of 𝐴 is usually written "|| 𝐴 ||", but we use function notation to take advantage of our existing theorems about functions. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ normℎ = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥))) | ||
Definition | df-hba 27826 | Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 27856). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as theorem hhba 28024. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | ||
Definition | df-h0v 27827 | Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as theorem hh0v 28025. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | ||
Definition | df-hvsub 27828* | Define vector subtraction. See hvsubvali 27877 for its value and hvsubcli 27878 for its closure. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) | ||
Definition | df-hlim 27829* | Define the limit relation for Hilbert space. See hlimi 28045 for its relational expression. Note that 𝑓:ℕ⟶ ℋ is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of converge in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ ⇝𝑣 = {〈𝑓, 𝑤〉 ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥)} | ||
Definition | df-hcau 27830* | Define the set of Cauchy sequences on a Hilbert space. See hcau 28041 for its membership relation. Note that 𝑓:ℕ⟶ ℋ is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of Cauchy sequence in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ Cauchy = {𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥} | ||
Theorem | h2hva 27831 | The group (addition) operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ +ℎ = ( +𝑣 ‘𝑈) | ||
Theorem | h2hsm 27832 | The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) | ||
Theorem | h2hnm 27833 | The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ normℎ = (normCV‘𝑈) | ||
Theorem | h2hvs 27834 | The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) ⇒ ⊢ −ℎ = ( −𝑣 ‘𝑈) | ||
Theorem | h2hmetdval 27835 | Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) | ||
Theorem | h2hcau 27836 | The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)) | ||
Theorem | h2hlm 27837 | The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ⇝𝑣 = ((⇝𝑡‘𝐽) ↾ ( ℋ ↑𝑚 ℕ)) | ||
Before introducing the 18 axioms for Hilbert space, we first prove them as the conclusions of theorems axhilex-zf 27838 through axhcompl-zf 27855, using ZFC set theory only. These show that if we are given a known, fixed Hilbert space 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 that satisfies their hypotheses, then we can derive the Hilbert space axioms as theorems of ZFC set theory. In practice, in order to use these theorems to convert the Hilbert Space explorer to a ZFC-only subtheory, we would also have to provide definitions for the 3 (otherwise primitive) class constants +ℎ, ·ℎ, and ·ih before df-hnorm 27825 above. See also the comment in ax-hilex 27856. | ||
Theorem | axhilex-zf 27838 | Derive axiom ax-hilex 27856 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ℋ ∈ V | ||
Theorem | axhfvadd-zf 27839 | Derive axiom ax-hfvadd 27857 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | ||
Theorem | axhvcom-zf 27840 | Derive axiom ax-hvcom 27858 from Hilbert space under ZF set theory. (Contributed by NM, 27-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) | ||
Theorem | axhvass-zf 27841 | Derive axiom ax-hvass 27859 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶))) | ||
Theorem | axhv0cl-zf 27842 | Derive axiom ax-hv0cl 27860 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ 0ℎ ∈ ℋ | ||
Theorem | axhvaddid-zf 27843 | Derive axiom ax-hvaddid 27861 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | ||
Theorem | axhfvmul-zf 27844 | Derive axiom ax-hfvmul 27862 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | ||
Theorem | axhvmulid-zf 27845 | Derive axiom ax-hvmulid 27863 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | ||
Theorem | axhvmulass-zf 27846 | Derive axiom ax-hvmulass 27864 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) | ||
Theorem | axhvdistr1-zf 27847 | Derive axiom ax-hvdistr1 27865 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶))) | ||
Theorem | axhvdistr2-zf 27848 | Derive axiom ax-hvdistr2 27866 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (𝐵 ·ℎ 𝐶))) | ||
Theorem | axhvmul0-zf 27849 | Derive axiom ax-hvmul0 27867 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) | ||
Theorem | axhfi-zf 27850 | Derive axiom ax-hfi 27936 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ·ih :( ℋ × ℋ)⟶ℂ | ||
Theorem | axhis1-zf 27851 | Derive axiom ax-his1 27939 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) | ||
Theorem | axhis2-zf 27852 | Derive axiom ax-his2 27940 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶))) | ||
Theorem | axhis3-zf 27853 | Derive axiom ax-his3 27941 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) | ||
Theorem | axhis4-zf 27854 | Derive axiom ax-his4 27942 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | ||
Theorem | axhcompl-zf 27855* | Derive axiom ax-hcompl 28059 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) | ||
Here we introduce the axioms a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. The 18 axioms for a complex Hilbert space consist of ax-hilex 27856, ax-hfvadd 27857, ax-hvcom 27858, ax-hvass 27859, ax-hv0cl 27860, ax-hvaddid 27861, ax-hfvmul 27862, ax-hvmulid 27863, ax-hvmulass 27864, ax-hvdistr1 27865, ax-hvdistr2 27866, ax-hvmul0 27867, ax-hfi 27936, ax-his1 27939, ax-his2 27940, ax-his3 27941, ax-his4 27942, and ax-hcompl 28059. The axioms specify the properties of 5 primitive symbols, ℋ, +ℎ, ·ℎ, 0ℎ, and ·ih. If we can prove in ZFC set theory that a class 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 is a complex Hilbert space, i.e. that 𝑈 ∈ CHilOLD, then these axioms can be proved as theorems axhilex-zf 27838, axhfvadd-zf 27839, axhvcom-zf 27840, axhvass-zf 27841, axhv0cl-zf 27842, axhvaddid-zf 27843, axhfvmul-zf 27844, axhvmulid-zf 27845, axhvmulass-zf 27846, axhvdistr1-zf 27847, axhvdistr2-zf 27848, axhvmul0-zf 27849, axhfi-zf 27850, axhis1-zf 27851, axhis2-zf 27852, axhis3-zf 27853, axhis4-zf 27854, and axhcompl-zf 27855 respectively. In that case, the theorems of the Hilbert Space Explorer will become theorems of ZFC set theory. See also the comments in axhilex-zf 27838. | ||
Axiom | ax-hilex 27856 | This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
⊢ ℋ ∈ V | ||
Axiom | ax-hfvadd 27857 | Vector addition is an operation on ℋ. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | ||
Axiom | ax-hvcom 27858 | Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) | ||
Axiom | ax-hvass 27859 | Vector addition is associative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶))) | ||
Axiom | ax-hv0cl 27860 | The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
⊢ 0ℎ ∈ ℋ | ||
Axiom | ax-hvaddid 27861 | Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | ||
Axiom | ax-hfvmul 27862 | Scalar multiplication is an operation on ℂ and ℋ. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | ||
Axiom | ax-hvmulid 27863 | Scalar multiplication by one. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | ||
Axiom | ax-hvmulass 27864 | Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) | ||
Axiom | ax-hvdistr1 27865 | Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶))) | ||
Axiom | ax-hvdistr2 27866 | Scalar multiplication distributive law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (𝐵 ·ℎ 𝐶))) | ||
Axiom | ax-hvmul0 27867 | Scalar multiplication by zero. We can derive the existence of the negative of a vector from this axiom (see hvsubid 27883 and hvsubval 27873). (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) | ||
Theorem | hvmulex 27868 | The Hilbert space scalar product operation is a set. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.) |
⊢ ·ℎ ∈ V | ||
Theorem | hvaddcl 27869 | Closure of vector addition. (Contributed by NM, 18-Apr-2007.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) | ||
Theorem | hvmulcl 27870 | Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | ||
Theorem | hvmulcli 27871 | Closure inference for scalar multiplication. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 ·ℎ 𝐵) ∈ ℋ | ||
Theorem | hvsubf 27872 | Mapping domain and codomain of vector subtraction. (Contributed by NM, 6-Sep-2007.) (New usage is discouraged.) |
⊢ −ℎ :( ℋ × ℋ)⟶ ℋ | ||
Theorem | hvsubval 27873 | Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | ||
Theorem | hvsubcl 27874 | Closure of vector subtraction. (Contributed by NM, 17-Aug-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) ∈ ℋ) | ||
Theorem | hvaddcli 27875 | Closure of vector addition. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ | ||
Theorem | hvcomi 27876 | Commutation of vector addition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) | ||
Theorem | hvsubvali 27877 | Value of vector subtraction definition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) | ||
Theorem | hvsubcli 27878 | Closure of vector subtraction. (Contributed by NM, 2-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 −ℎ 𝐵) ∈ ℋ | ||
Theorem | ifhvhv0 27879 | Prove if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ (common case). (Contributed by David A. Wheeler, 7-Dec-2018.) (New usage is discouraged.) |
⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | ||
Theorem | hvaddid2 27880 | Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) | ||
Theorem | hvmul0 27881 | Scalar multiplication with the zero vector. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℂ → (𝐴 ·ℎ 0ℎ) = 0ℎ) | ||
Theorem | hvmul0or 27882 | If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) = 0ℎ ↔ (𝐴 = 0 ∨ 𝐵 = 0ℎ))) | ||
Theorem | hvsubid 27883 | Subtraction of a vector from itself. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = 0ℎ) | ||
Theorem | hvnegid 27884 | Addition of negative of a vector to itself. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ (-1 ·ℎ 𝐴)) = 0ℎ) | ||
Theorem | hv2neg 27885 | Two ways to express the negative of a vector. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (0ℎ −ℎ 𝐴) = (-1 ·ℎ 𝐴)) | ||
Theorem | hvaddid2i 27886 | Addition with the zero vector. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ ⇒ ⊢ (0ℎ +ℎ 𝐴) = 𝐴 | ||
Theorem | hvnegidi 27887 | Addition of negative of a vector to itself. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ ⇒ ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐴)) = 0ℎ | ||
Theorem | hv2negi 27888 | Two ways to express the negative of a vector. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ ⇒ ⊢ (0ℎ −ℎ 𝐴) = (-1 ·ℎ 𝐴) | ||
Theorem | hvm1neg 27889 | Convert minus one times a scalar product to the negative of the scalar. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ (𝐴 ·ℎ 𝐵)) = (-𝐴 ·ℎ 𝐵)) | ||
Theorem | hvaddsubval 27890 | Value of vector addition in terms of vector subtraction. (Contributed by NM, 10-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐴 −ℎ (-1 ·ℎ 𝐵))) | ||
Theorem | hvadd32 27891 | Commutative/associative law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = ((𝐴 +ℎ 𝐶) +ℎ 𝐵)) | ||
Theorem | hvadd12 27892 | Commutative/associative law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ (𝐵 +ℎ 𝐶)) = (𝐵 +ℎ (𝐴 +ℎ 𝐶))) | ||
Theorem | hvadd4 27893 | Hilbert vector space addition law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) | ||
Theorem | hvsub4 27894 | Hilbert vector space addition/subtraction law. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) −ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) +ℎ (𝐵 −ℎ 𝐷))) | ||
Theorem | hvaddsub12 27895 | Commutative/associative law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ (𝐵 −ℎ 𝐶)) = (𝐵 +ℎ (𝐴 −ℎ 𝐶))) | ||
Theorem | hvpncan 27896 | Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐵) = 𝐴) | ||
Theorem | hvpncan2 27897 | Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐴) = 𝐵) | ||
Theorem | hvaddsubass 27898 | Associativity of sum and difference of Hilbert space vectors. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐶) = (𝐴 +ℎ (𝐵 −ℎ 𝐶))) | ||
Theorem | hvpncan3 27899 | Subtraction and addition of equal Hilbert space vectors. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ (𝐵 −ℎ 𝐴)) = 𝐵) | ||
Theorem | hvmulcom 27900 | Scalar multiplication commutative law. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) = (𝐵 ·ℎ (𝐴 ·ℎ 𝐶))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |