HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nonbooli Structured version   Visualization version   GIF version

Theorem nonbooli 28510
Description: A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where ((𝐻𝐹) ∨ (𝐻𝐺)) = 0 but (𝐻 ∩ (𝐹 𝐺)) ≠ 0. The antecedent specifies that the vectors 𝐴 and 𝐵 are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to 𝐹, 𝐺, and 𝐻. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
nonbool.1 𝐴 ∈ ℋ
nonbool.2 𝐵 ∈ ℋ
nonbool.3 𝐹 = (span‘{𝐴})
nonbool.4 𝐺 = (span‘{𝐵})
nonbool.5 𝐻 = (span‘{(𝐴 + 𝐵)})
Assertion
Ref Expression
nonbooli (¬ (𝐴𝐺𝐵𝐹) → (𝐻 ∩ (𝐹 𝐺)) ≠ ((𝐻𝐹) ∨ (𝐻𝐺)))

Proof of Theorem nonbooli
StepHypRef Expression
1 nonbool.1 . . . . . . . . . . . . 13 𝐴 ∈ ℋ
2 nonbool.2 . . . . . . . . . . . . 13 𝐵 ∈ ℋ
31, 2hvaddcli 27875 . . . . . . . . . . . 12 (𝐴 + 𝐵) ∈ ℋ
4 spansnid 28422 . . . . . . . . . . . 12 ((𝐴 + 𝐵) ∈ ℋ → (𝐴 + 𝐵) ∈ (span‘{(𝐴 + 𝐵)}))
53, 4ax-mp 5 . . . . . . . . . . 11 (𝐴 + 𝐵) ∈ (span‘{(𝐴 + 𝐵)})
6 nonbool.5 . . . . . . . . . . 11 𝐻 = (span‘{(𝐴 + 𝐵)})
75, 6eleqtrri 2700 . . . . . . . . . 10 (𝐴 + 𝐵) ∈ 𝐻
8 nonbool.3 . . . . . . . . . . . . 13 𝐹 = (span‘{𝐴})
91spansnchi 28421 . . . . . . . . . . . . . 14 (span‘{𝐴}) ∈ C
109chshii 28084 . . . . . . . . . . . . 13 (span‘{𝐴}) ∈ S
118, 10eqeltri 2697 . . . . . . . . . . . 12 𝐹S
12 nonbool.4 . . . . . . . . . . . . 13 𝐺 = (span‘{𝐵})
132spansnchi 28421 . . . . . . . . . . . . . 14 (span‘{𝐵}) ∈ C
1413chshii 28084 . . . . . . . . . . . . 13 (span‘{𝐵}) ∈ S
1512, 14eqeltri 2697 . . . . . . . . . . . 12 𝐺S
1611, 15shsleji 28229 . . . . . . . . . . 11 (𝐹 + 𝐺) ⊆ (𝐹 𝐺)
17 spansnid 28422 . . . . . . . . . . . . . 14 (𝐴 ∈ ℋ → 𝐴 ∈ (span‘{𝐴}))
181, 17ax-mp 5 . . . . . . . . . . . . 13 𝐴 ∈ (span‘{𝐴})
1918, 8eleqtrri 2700 . . . . . . . . . . . 12 𝐴𝐹
20 spansnid 28422 . . . . . . . . . . . . . 14 (𝐵 ∈ ℋ → 𝐵 ∈ (span‘{𝐵}))
212, 20ax-mp 5 . . . . . . . . . . . . 13 𝐵 ∈ (span‘{𝐵})
2221, 12eleqtrri 2700 . . . . . . . . . . . 12 𝐵𝐺
2311, 15shsvai 28223 . . . . . . . . . . . 12 ((𝐴𝐹𝐵𝐺) → (𝐴 + 𝐵) ∈ (𝐹 + 𝐺))
2419, 22, 23mp2an 708 . . . . . . . . . . 11 (𝐴 + 𝐵) ∈ (𝐹 + 𝐺)
2516, 24sselii 3600 . . . . . . . . . 10 (𝐴 + 𝐵) ∈ (𝐹 𝐺)
26 elin 3796 . . . . . . . . . 10 ((𝐴 + 𝐵) ∈ (𝐻 ∩ (𝐹 𝐺)) ↔ ((𝐴 + 𝐵) ∈ 𝐻 ∧ (𝐴 + 𝐵) ∈ (𝐹 𝐺)))
277, 25, 26mpbir2an 955 . . . . . . . . 9 (𝐴 + 𝐵) ∈ (𝐻 ∩ (𝐹 𝐺))
28 eleq2 2690 . . . . . . . . 9 ((𝐻 ∩ (𝐹 𝐺)) = 0 → ((𝐴 + 𝐵) ∈ (𝐻 ∩ (𝐹 𝐺)) ↔ (𝐴 + 𝐵) ∈ 0))
2927, 28mpbii 223 . . . . . . . 8 ((𝐻 ∩ (𝐹 𝐺)) = 0 → (𝐴 + 𝐵) ∈ 0)
30 elch0 28111 . . . . . . . 8 ((𝐴 + 𝐵) ∈ 0 ↔ (𝐴 + 𝐵) = 0)
3129, 30sylib 208 . . . . . . 7 ((𝐻 ∩ (𝐹 𝐺)) = 0 → (𝐴 + 𝐵) = 0)
32 ch0 28085 . . . . . . . 8 ((span‘{𝐴}) ∈ C → 0 ∈ (span‘{𝐴}))
339, 32ax-mp 5 . . . . . . 7 0 ∈ (span‘{𝐴})
3431, 33syl6eqel 2709 . . . . . 6 ((𝐻 ∩ (𝐹 𝐺)) = 0 → (𝐴 + 𝐵) ∈ (span‘{𝐴}))
358eleq2i 2693 . . . . . . 7 (𝐵𝐹𝐵 ∈ (span‘{𝐴}))
36 sumspansn 28508 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴})))
371, 2, 36mp2an 708 . . . . . . 7 ((𝐴 + 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴}))
3835, 37bitr4i 267 . . . . . 6 (𝐵𝐹 ↔ (𝐴 + 𝐵) ∈ (span‘{𝐴}))
3934, 38sylibr 224 . . . . 5 ((𝐻 ∩ (𝐹 𝐺)) = 0𝐵𝐹)
4039con3i 150 . . . 4 𝐵𝐹 → ¬ (𝐻 ∩ (𝐹 𝐺)) = 0)
4140adantl 482 . . 3 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ¬ (𝐻 ∩ (𝐹 𝐺)) = 0)
426, 8ineq12i 3812 . . . . . 6 (𝐻𝐹) = ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐴}))
433, 1spansnm0i 28509 . . . . . . 7 (¬ (𝐴 + 𝐵) ∈ (span‘{𝐴}) → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐴})) = 0)
4438, 43sylnbi 320 . . . . . 6 𝐵𝐹 → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐴})) = 0)
4542, 44syl5eq 2668 . . . . 5 𝐵𝐹 → (𝐻𝐹) = 0)
466, 12ineq12i 3812 . . . . . 6 (𝐻𝐺) = ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐵}))
47 sumspansn 28508 . . . . . . . . 9 ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 + 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵})))
482, 1, 47mp2an 708 . . . . . . . 8 ((𝐵 + 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵}))
491, 2hvcomi 27876 . . . . . . . . 9 (𝐴 + 𝐵) = (𝐵 + 𝐴)
5049eleq1i 2692 . . . . . . . 8 ((𝐴 + 𝐵) ∈ (span‘{𝐵}) ↔ (𝐵 + 𝐴) ∈ (span‘{𝐵}))
5112eleq2i 2693 . . . . . . . 8 (𝐴𝐺𝐴 ∈ (span‘{𝐵}))
5248, 50, 513bitr4ri 293 . . . . . . 7 (𝐴𝐺 ↔ (𝐴 + 𝐵) ∈ (span‘{𝐵}))
533, 2spansnm0i 28509 . . . . . . 7 (¬ (𝐴 + 𝐵) ∈ (span‘{𝐵}) → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐵})) = 0)
5452, 53sylnbi 320 . . . . . 6 𝐴𝐺 → ((span‘{(𝐴 + 𝐵)}) ∩ (span‘{𝐵})) = 0)
5546, 54syl5eq 2668 . . . . 5 𝐴𝐺 → (𝐻𝐺) = 0)
5645, 55oveqan12rd 6670 . . . 4 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ((𝐻𝐹) ∨ (𝐻𝐺)) = (0 0))
57 h0elch 28112 . . . . 5 0C
5857chj0i 28314 . . . 4 (0 0) = 0
5956, 58syl6eq 2672 . . 3 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ((𝐻𝐹) ∨ (𝐻𝐺)) = 0)
60 eqeq2 2633 . . . . 5 (((𝐻𝐹) ∨ (𝐻𝐺)) = 0 → ((𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)) ↔ (𝐻 ∩ (𝐹 𝐺)) = 0))
6160notbid 308 . . . 4 (((𝐻𝐹) ∨ (𝐻𝐺)) = 0 → (¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 𝐺)) = 0))
6261biimparc 504 . . 3 ((¬ (𝐻 ∩ (𝐹 𝐺)) = 0 ∧ ((𝐻𝐹) ∨ (𝐻𝐺)) = 0) → ¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)))
6341, 59, 62syl2anc 693 . 2 ((¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹) → ¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)))
64 ioran 511 . 2 (¬ (𝐴𝐺𝐵𝐹) ↔ (¬ 𝐴𝐺 ∧ ¬ 𝐵𝐹))
65 df-ne 2795 . 2 ((𝐻 ∩ (𝐹 𝐺)) ≠ ((𝐻𝐹) ∨ (𝐻𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 𝐺)) = ((𝐻𝐹) ∨ (𝐻𝐺)))
6663, 64, 653imtr4i 281 1 (¬ (𝐴𝐺𝐵𝐹) → (𝐻 ∩ (𝐹 𝐺)) ≠ ((𝐻𝐹) ∨ (𝐻𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  cin 3573  {csn 4177  cfv 5888  (class class class)co 6650  chil 27776   + cva 27777  0c0v 27781   S csh 27785   C cch 27786   + cph 27788  spancspn 27789   chj 27790  0c0h 27792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942  ax-hcompl 28059
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-lm 21033  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cfil 23053  df-cau 23054  df-cmet 23055  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-dip 27556  df-ssp 27577  df-ph 27668  df-cbn 27719  df-hnorm 27825  df-hba 27826  df-hvsub 27828  df-hlim 27829  df-hcau 27830  df-sh 28064  df-ch 28078  df-oc 28109  df-ch0 28110  df-shs 28167  df-span 28168  df-chj 28169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator