![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nonbooli | Structured version Visualization version GIF version |
Description: A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ but (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ 0ℋ. The antecedent specifies that the vectors 𝐴 and 𝐵 are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to 𝐹, 𝐺, and 𝐻. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nonbool.1 | ⊢ 𝐴 ∈ ℋ |
nonbool.2 | ⊢ 𝐵 ∈ ℋ |
nonbool.3 | ⊢ 𝐹 = (span‘{𝐴}) |
nonbool.4 | ⊢ 𝐺 = (span‘{𝐵}) |
nonbool.5 | ⊢ 𝐻 = (span‘{(𝐴 +ℎ 𝐵)}) |
Ref | Expression |
---|---|
nonbooli | ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) → (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nonbool.1 | . . . . . . . . . . . . 13 ⊢ 𝐴 ∈ ℋ | |
2 | nonbool.2 | . . . . . . . . . . . . 13 ⊢ 𝐵 ∈ ℋ | |
3 | 1, 2 | hvaddcli 27875 | . . . . . . . . . . . 12 ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ |
4 | spansnid 28422 | . . . . . . . . . . . 12 ⊢ ((𝐴 +ℎ 𝐵) ∈ ℋ → (𝐴 +ℎ 𝐵) ∈ (span‘{(𝐴 +ℎ 𝐵)})) | |
5 | 3, 4 | ax-mp 5 | . . . . . . . . . . 11 ⊢ (𝐴 +ℎ 𝐵) ∈ (span‘{(𝐴 +ℎ 𝐵)}) |
6 | nonbool.5 | . . . . . . . . . . 11 ⊢ 𝐻 = (span‘{(𝐴 +ℎ 𝐵)}) | |
7 | 5, 6 | eleqtrri 2700 | . . . . . . . . . 10 ⊢ (𝐴 +ℎ 𝐵) ∈ 𝐻 |
8 | nonbool.3 | . . . . . . . . . . . . 13 ⊢ 𝐹 = (span‘{𝐴}) | |
9 | 1 | spansnchi 28421 | . . . . . . . . . . . . . 14 ⊢ (span‘{𝐴}) ∈ Cℋ |
10 | 9 | chshii 28084 | . . . . . . . . . . . . 13 ⊢ (span‘{𝐴}) ∈ Sℋ |
11 | 8, 10 | eqeltri 2697 | . . . . . . . . . . . 12 ⊢ 𝐹 ∈ Sℋ |
12 | nonbool.4 | . . . . . . . . . . . . 13 ⊢ 𝐺 = (span‘{𝐵}) | |
13 | 2 | spansnchi 28421 | . . . . . . . . . . . . . 14 ⊢ (span‘{𝐵}) ∈ Cℋ |
14 | 13 | chshii 28084 | . . . . . . . . . . . . 13 ⊢ (span‘{𝐵}) ∈ Sℋ |
15 | 12, 14 | eqeltri 2697 | . . . . . . . . . . . 12 ⊢ 𝐺 ∈ Sℋ |
16 | 11, 15 | shsleji 28229 | . . . . . . . . . . 11 ⊢ (𝐹 +ℋ 𝐺) ⊆ (𝐹 ∨ℋ 𝐺) |
17 | spansnid 28422 | . . . . . . . . . . . . . 14 ⊢ (𝐴 ∈ ℋ → 𝐴 ∈ (span‘{𝐴})) | |
18 | 1, 17 | ax-mp 5 | . . . . . . . . . . . . 13 ⊢ 𝐴 ∈ (span‘{𝐴}) |
19 | 18, 8 | eleqtrri 2700 | . . . . . . . . . . . 12 ⊢ 𝐴 ∈ 𝐹 |
20 | spansnid 28422 | . . . . . . . . . . . . . 14 ⊢ (𝐵 ∈ ℋ → 𝐵 ∈ (span‘{𝐵})) | |
21 | 2, 20 | ax-mp 5 | . . . . . . . . . . . . 13 ⊢ 𝐵 ∈ (span‘{𝐵}) |
22 | 21, 12 | eleqtrri 2700 | . . . . . . . . . . . 12 ⊢ 𝐵 ∈ 𝐺 |
23 | 11, 15 | shsvai 28223 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺) → (𝐴 +ℎ 𝐵) ∈ (𝐹 +ℋ 𝐺)) |
24 | 19, 22, 23 | mp2an 708 | . . . . . . . . . . 11 ⊢ (𝐴 +ℎ 𝐵) ∈ (𝐹 +ℋ 𝐺) |
25 | 16, 24 | sselii 3600 | . . . . . . . . . 10 ⊢ (𝐴 +ℎ 𝐵) ∈ (𝐹 ∨ℋ 𝐺) |
26 | elin 3796 | . . . . . . . . . 10 ⊢ ((𝐴 +ℎ 𝐵) ∈ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ↔ ((𝐴 +ℎ 𝐵) ∈ 𝐻 ∧ (𝐴 +ℎ 𝐵) ∈ (𝐹 ∨ℋ 𝐺))) | |
27 | 7, 25, 26 | mpbir2an 955 | . . . . . . . . 9 ⊢ (𝐴 +ℎ 𝐵) ∈ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) |
28 | eleq2 2690 | . . . . . . . . 9 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → ((𝐴 +ℎ 𝐵) ∈ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ↔ (𝐴 +ℎ 𝐵) ∈ 0ℋ)) | |
29 | 27, 28 | mpbii 223 | . . . . . . . 8 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → (𝐴 +ℎ 𝐵) ∈ 0ℋ) |
30 | elch0 28111 | . . . . . . . 8 ⊢ ((𝐴 +ℎ 𝐵) ∈ 0ℋ ↔ (𝐴 +ℎ 𝐵) = 0ℎ) | |
31 | 29, 30 | sylib 208 | . . . . . . 7 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → (𝐴 +ℎ 𝐵) = 0ℎ) |
32 | ch0 28085 | . . . . . . . 8 ⊢ ((span‘{𝐴}) ∈ Cℋ → 0ℎ ∈ (span‘{𝐴})) | |
33 | 9, 32 | ax-mp 5 | . . . . . . 7 ⊢ 0ℎ ∈ (span‘{𝐴}) |
34 | 31, 33 | syl6eqel 2709 | . . . . . 6 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → (𝐴 +ℎ 𝐵) ∈ (span‘{𝐴})) |
35 | 8 | eleq2i 2693 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐹 ↔ 𝐵 ∈ (span‘{𝐴})) |
36 | sumspansn 28508 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴}))) | |
37 | 1, 2, 36 | mp2an 708 | . . . . . . 7 ⊢ ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴})) |
38 | 35, 37 | bitr4i 267 | . . . . . 6 ⊢ (𝐵 ∈ 𝐹 ↔ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐴})) |
39 | 34, 38 | sylibr 224 | . . . . 5 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ → 𝐵 ∈ 𝐹) |
40 | 39 | con3i 150 | . . . 4 ⊢ (¬ 𝐵 ∈ 𝐹 → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ) |
41 | 40 | adantl 482 | . . 3 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ) |
42 | 6, 8 | ineq12i 3812 | . . . . . 6 ⊢ (𝐻 ∩ 𝐹) = ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐴})) |
43 | 3, 1 | spansnm0i 28509 | . . . . . . 7 ⊢ (¬ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐴})) = 0ℋ) |
44 | 38, 43 | sylnbi 320 | . . . . . 6 ⊢ (¬ 𝐵 ∈ 𝐹 → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐴})) = 0ℋ) |
45 | 42, 44 | syl5eq 2668 | . . . . 5 ⊢ (¬ 𝐵 ∈ 𝐹 → (𝐻 ∩ 𝐹) = 0ℋ) |
46 | 6, 12 | ineq12i 3812 | . . . . . 6 ⊢ (𝐻 ∩ 𝐺) = ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐵})) |
47 | sumspansn 28508 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 +ℎ 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵}))) | |
48 | 2, 1, 47 | mp2an 708 | . . . . . . . 8 ⊢ ((𝐵 +ℎ 𝐴) ∈ (span‘{𝐵}) ↔ 𝐴 ∈ (span‘{𝐵})) |
49 | 1, 2 | hvcomi 27876 | . . . . . . . . 9 ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
50 | 49 | eleq1i 2692 | . . . . . . . 8 ⊢ ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐵}) ↔ (𝐵 +ℎ 𝐴) ∈ (span‘{𝐵})) |
51 | 12 | eleq2i 2693 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝐺 ↔ 𝐴 ∈ (span‘{𝐵})) |
52 | 48, 50, 51 | 3bitr4ri 293 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐺 ↔ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐵})) |
53 | 3, 2 | spansnm0i 28509 | . . . . . . 7 ⊢ (¬ (𝐴 +ℎ 𝐵) ∈ (span‘{𝐵}) → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐵})) = 0ℋ) |
54 | 52, 53 | sylnbi 320 | . . . . . 6 ⊢ (¬ 𝐴 ∈ 𝐺 → ((span‘{(𝐴 +ℎ 𝐵)}) ∩ (span‘{𝐵})) = 0ℋ) |
55 | 46, 54 | syl5eq 2668 | . . . . 5 ⊢ (¬ 𝐴 ∈ 𝐺 → (𝐻 ∩ 𝐺) = 0ℋ) |
56 | 45, 55 | oveqan12rd 6670 | . . . 4 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = (0ℋ ∨ℋ 0ℋ)) |
57 | h0elch 28112 | . . . . 5 ⊢ 0ℋ ∈ Cℋ | |
58 | 57 | chj0i 28314 | . . . 4 ⊢ (0ℋ ∨ℋ 0ℋ) = 0ℋ |
59 | 56, 58 | syl6eq 2672 | . . 3 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ) |
60 | eqeq2 2633 | . . . . 5 ⊢ (((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ → ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) ↔ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ)) | |
61 | 60 | notbid 308 | . . . 4 ⊢ (((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ → (¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ)) |
62 | 61 | biimparc 504 | . . 3 ⊢ ((¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = 0ℋ ∧ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ) → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
63 | 41, 59, 62 | syl2anc 693 | . 2 ⊢ ((¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹) → ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
64 | ioran 511 | . 2 ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) ↔ (¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹)) | |
65 | df-ne 2795 | . 2 ⊢ ((𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) ↔ ¬ (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) = ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) | |
66 | 63, 64, 65 | 3imtr4i 281 | 1 ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) → (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∩ cin 3573 {csn 4177 ‘cfv 5888 (class class class)co 6650 ℋchil 27776 +ℎ cva 27777 0ℎc0v 27781 Sℋ csh 27785 Cℋ cch 27786 +ℋ cph 27788 spancspn 27789 ∨ℋ chj 27790 0ℋc0h 27792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cc 9257 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 ax-hilex 27856 ax-hfvadd 27857 ax-hvcom 27858 ax-hvass 27859 ax-hv0cl 27860 ax-hvaddid 27861 ax-hfvmul 27862 ax-hvmulid 27863 ax-hvmulass 27864 ax-hvdistr1 27865 ax-hvdistr2 27866 ax-hvmul0 27867 ax-hfi 27936 ax-his1 27939 ax-his2 27940 ax-his3 27941 ax-his4 27942 ax-hcompl 28059 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-omul 7565 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-acn 8768 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-rlim 14220 df-sum 14417 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-hom 15966 df-cco 15967 df-rest 16083 df-topn 16084 df-0g 16102 df-gsum 16103 df-topgen 16104 df-pt 16105 df-prds 16108 df-xrs 16162 df-qtop 16167 df-imas 16168 df-xps 16170 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-mulg 17541 df-cntz 17750 df-cmn 18195 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-fbas 19743 df-fg 19744 df-cnfld 19747 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cld 20823 df-ntr 20824 df-cls 20825 df-nei 20902 df-cn 21031 df-cnp 21032 df-lm 21033 df-haus 21119 df-tx 21365 df-hmeo 21558 df-fil 21650 df-fm 21742 df-flim 21743 df-flf 21744 df-xms 22125 df-ms 22126 df-tms 22127 df-cfil 23053 df-cau 23054 df-cmet 23055 df-grpo 27347 df-gid 27348 df-ginv 27349 df-gdiv 27350 df-ablo 27399 df-vc 27414 df-nv 27447 df-va 27450 df-ba 27451 df-sm 27452 df-0v 27453 df-vs 27454 df-nmcv 27455 df-ims 27456 df-dip 27556 df-ssp 27577 df-ph 27668 df-cbn 27719 df-hnorm 27825 df-hba 27826 df-hvsub 27828 df-hlim 27829 df-hcau 27830 df-sh 28064 df-ch 28078 df-oc 28109 df-ch0 28110 df-shs 28167 df-span 28168 df-chj 28169 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |