![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpval | Structured version Visualization version GIF version |
Description: Partition consisting of a fixed number 𝑀 of parts. (Contributed by AV, 9-Jul-2020.) |
Ref | Expression |
---|---|
iccpval | ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iccp 41350 | . . 3 ⊢ RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑀 ∈ ℕ → RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))})) |
3 | oveq2 6658 | . . . . 5 ⊢ (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀)) | |
4 | 3 | oveq2d 6666 | . . . 4 ⊢ (𝑚 = 𝑀 → (ℝ* ↑𝑚 (0...𝑚)) = (ℝ* ↑𝑚 (0...𝑀))) |
5 | oveq2 6658 | . . . . 5 ⊢ (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀)) | |
6 | 5 | raleqdv 3144 | . . . 4 ⊢ (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))) |
7 | 4, 6 | rabeqbidv 3195 | . . 3 ⊢ (𝑚 = 𝑀 → {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} = {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
8 | 7 | adantl 482 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑚 = 𝑀) → {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} = {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
9 | id 22 | . 2 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℕ) | |
10 | ovex 6678 | . . . 4 ⊢ (ℝ* ↑𝑚 (0...𝑀)) ∈ V | |
11 | 10 | rabex 4813 | . . 3 ⊢ {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} ∈ V |
12 | 11 | a1i 11 | . 2 ⊢ (𝑀 ∈ ℕ → {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} ∈ V) |
13 | 2, 8, 9, 12 | fvmptd 6288 | 1 ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {crab 2916 Vcvv 3200 class class class wbr 4653 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 0cc0 9936 1c1 9937 + caddc 9939 ℝ*cxr 10073 < clt 10074 ℕcn 11020 ...cfz 12326 ..^cfzo 12465 RePartciccp 41349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-iccp 41350 |
This theorem is referenced by: iccpart 41352 |
Copyright terms: Public domain | W3C validator |