Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpval Structured version   Visualization version   GIF version

Theorem iccpval 41351
Description: Partition consisting of a fixed number 𝑀 of parts. (Contributed by AV, 9-Jul-2020.)
Assertion
Ref Expression
iccpval (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ*𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
Distinct variable group:   𝑖,𝑝,𝑀

Proof of Theorem iccpval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 df-iccp 41350 . . 3 RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ*𝑚 (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
21a1i 11 . 2 (𝑀 ∈ ℕ → RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ*𝑚 (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))}))
3 oveq2 6658 . . . . 5 (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀))
43oveq2d 6666 . . . 4 (𝑚 = 𝑀 → (ℝ*𝑚 (0...𝑚)) = (ℝ*𝑚 (0...𝑀)))
5 oveq2 6658 . . . . 5 (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀))
65raleqdv 3144 . . . 4 (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))))
74, 6rabeqbidv 3195 . . 3 (𝑚 = 𝑀 → {𝑝 ∈ (ℝ*𝑚 (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))} = {𝑝 ∈ (ℝ*𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
87adantl 482 . 2 ((𝑀 ∈ ℕ ∧ 𝑚 = 𝑀) → {𝑝 ∈ (ℝ*𝑚 (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))} = {𝑝 ∈ (ℝ*𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
9 id 22 . 2 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ)
10 ovex 6678 . . . 4 (ℝ*𝑚 (0...𝑀)) ∈ V
1110rabex 4813 . . 3 {𝑝 ∈ (ℝ*𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))} ∈ V
1211a1i 11 . 2 (𝑀 ∈ ℕ → {𝑝 ∈ (ℝ*𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))} ∈ V)
132, 8, 9, 12fvmptd 6288 1 (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ*𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  0cc0 9936  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cn 11020  ...cfz 12326  ..^cfzo 12465  RePartciccp 41349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-iccp 41350
This theorem is referenced by:  iccpart  41352
  Copyright terms: Public domain W3C validator