MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iin0 Structured version   Visualization version   GIF version

Theorem iin0 4839
Description: An indexed intersection of the empty set, with a nonempty index set, is empty. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
iin0 (𝐴 ≠ ∅ ↔ 𝑥𝐴 ∅ = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem iin0
StepHypRef Expression
1 iinconst 4530 . 2 (𝐴 ≠ ∅ → 𝑥𝐴 ∅ = ∅)
2 0ex 4790 . . . . . 6 ∅ ∈ V
32n0ii 3922 . . . . 5 ¬ V = ∅
4 0iin 4578 . . . . . 6 𝑥 ∈ ∅ ∅ = V
54eqeq1i 2627 . . . . 5 ( 𝑥 ∈ ∅ ∅ = ∅ ↔ V = ∅)
63, 5mtbir 313 . . . 4 ¬ 𝑥 ∈ ∅ ∅ = ∅
7 iineq1 4535 . . . . 5 (𝐴 = ∅ → 𝑥𝐴 ∅ = 𝑥 ∈ ∅ ∅)
87eqeq1d 2624 . . . 4 (𝐴 = ∅ → ( 𝑥𝐴 ∅ = ∅ ↔ 𝑥 ∈ ∅ ∅ = ∅))
96, 8mtbiri 317 . . 3 (𝐴 = ∅ → ¬ 𝑥𝐴 ∅ = ∅)
109necon2ai 2823 . 2 ( 𝑥𝐴 ∅ = ∅ → 𝐴 ≠ ∅)
111, 10impbii 199 1 (𝐴 ≠ ∅ ↔ 𝑥𝐴 ∅ = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  wne 2794  Vcvv 3200  c0 3915   ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-nul 3916  df-iin 4523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator