MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinvdif Structured version   Visualization version   GIF version

Theorem iinvdif 4592
Description: The indexed intersection of a complement. (Contributed by Gérard Lang, 5-Aug-2018.)
Assertion
Ref Expression
iinvdif 𝑥𝐴 (V ∖ 𝐵) = (V ∖ 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iinvdif
StepHypRef Expression
1 dif0 3950 . . . 4 (V ∖ ∅) = V
2 0iun 4577 . . . . 5 𝑥 ∈ ∅ 𝐵 = ∅
32difeq2i 3725 . . . 4 (V ∖ 𝑥 ∈ ∅ 𝐵) = (V ∖ ∅)
4 0iin 4578 . . . 4 𝑥 ∈ ∅ (V ∖ 𝐵) = V
51, 3, 43eqtr4ri 2655 . . 3 𝑥 ∈ ∅ (V ∖ 𝐵) = (V ∖ 𝑥 ∈ ∅ 𝐵)
6 iineq1 4535 . . 3 (𝐴 = ∅ → 𝑥𝐴 (V ∖ 𝐵) = 𝑥 ∈ ∅ (V ∖ 𝐵))
7 iuneq1 4534 . . . 4 (𝐴 = ∅ → 𝑥𝐴 𝐵 = 𝑥 ∈ ∅ 𝐵)
87difeq2d 3728 . . 3 (𝐴 = ∅ → (V ∖ 𝑥𝐴 𝐵) = (V ∖ 𝑥 ∈ ∅ 𝐵))
95, 6, 83eqtr4a 2682 . 2 (𝐴 = ∅ → 𝑥𝐴 (V ∖ 𝐵) = (V ∖ 𝑥𝐴 𝐵))
10 iindif2 4589 . 2 (𝐴 ≠ ∅ → 𝑥𝐴 (V ∖ 𝐵) = (V ∖ 𝑥𝐴 𝐵))
119, 10pm2.61ine 2877 1 𝑥𝐴 (V ∖ 𝐵) = (V ∖ 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  Vcvv 3200  cdif 3571  c0 3915   ciun 4520   ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-iun 4522  df-iin 4523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator