MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinvdif Structured version   Visualization version   Unicode version

Theorem iinvdif 4592
Description: The indexed intersection of a complement. (Contributed by Gérard Lang, 5-Aug-2018.)
Assertion
Ref Expression
iinvdif  |-  |^|_ x  e.  A  ( _V  \  B )  =  ( _V  \  U_ x  e.  A  B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem iinvdif
StepHypRef Expression
1 dif0 3950 . . . 4  |-  ( _V 
\  (/) )  =  _V
2 0iun 4577 . . . . 5  |-  U_ x  e.  (/)  B  =  (/)
32difeq2i 3725 . . . 4  |-  ( _V 
\  U_ x  e.  (/)  B )  =  ( _V 
\  (/) )
4 0iin 4578 . . . 4  |-  |^|_ x  e.  (/)  ( _V  \  B )  =  _V
51, 3, 43eqtr4ri 2655 . . 3  |-  |^|_ x  e.  (/)  ( _V  \  B )  =  ( _V  \  U_ x  e.  (/)  B )
6 iineq1 4535 . . 3  |-  ( A  =  (/)  ->  |^|_ x  e.  A  ( _V  \  B )  =  |^|_ x  e.  (/)  ( _V  \  B ) )
7 iuneq1 4534 . . . 4  |-  ( A  =  (/)  ->  U_ x  e.  A  B  =  U_ x  e.  (/)  B )
87difeq2d 3728 . . 3  |-  ( A  =  (/)  ->  ( _V 
\  U_ x  e.  A  B )  =  ( _V  \  U_ x  e.  (/)  B ) )
95, 6, 83eqtr4a 2682 . 2  |-  ( A  =  (/)  ->  |^|_ x  e.  A  ( _V  \  B )  =  ( _V  \  U_ x  e.  A  B )
)
10 iindif2 4589 . 2  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  ( _V  \  B )  =  ( _V  \  U_ x  e.  A  B )
)
119, 10pm2.61ine 2877 1  |-  |^|_ x  e.  A  ( _V  \  B )  =  ( _V  \  U_ x  e.  A  B )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483   _Vcvv 3200    \ cdif 3571   (/)c0 3915   U_ciun 4520   |^|_ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-iun 4522  df-iin 4523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator