MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imdistand Structured version   Visualization version   GIF version

Theorem imdistand 728
Description: Distribution of implication with conjunction (deduction rule). (Contributed by NM, 27-Aug-2004.)
Hypothesis
Ref Expression
imdistand.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
imdistand (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))

Proof of Theorem imdistand
StepHypRef Expression
1 imdistand.1 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
2 imdistan 725 . 2 ((𝜓 → (𝜒𝜃)) ↔ ((𝜓𝜒) → (𝜓𝜃)))
31, 2sylib 208 1 (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  imdistanda  729  a2and  853  predpo  5698  unblem1  8212  cfub  9071  lbzbi  11776  poimirlem32  33441  ispridl2  33837  ispridlc  33869  lnr2i  37686  rfovcnvf1od  38298
  Copyright terms: Public domain W3C validator