MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbzbi Structured version   Visualization version   GIF version

Theorem lbzbi 11776
Description: If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
lbzbi (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 ↔ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem lbzbi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . 3 𝑥 𝐴 ⊆ ℝ
2 nfre1 3005 . . 3 𝑥𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦
3 btwnz 11479 . . . . . . 7 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 ∧ ∃𝑧 ∈ ℤ 𝑥 < 𝑧))
43simpld 475 . . . . . 6 (𝑥 ∈ ℝ → ∃𝑧 ∈ ℤ 𝑧 < 𝑥)
5 ssel2 3598 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
6 zre 11381 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
7 ltleletr 10130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 < 𝑥𝑥𝑦) → 𝑧𝑦))
86, 7syl3an1 1359 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 < 𝑥𝑥𝑦) → 𝑧𝑦))
98expd 452 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦)))
1093expia 1267 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑦 ∈ ℝ → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦))))
115, 10syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦))))
1211expdimp 453 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) → (𝑦𝐴 → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦))))
1312com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → (𝑦𝐴 → (𝑥𝑦𝑧𝑦))))
1413imp 445 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → (𝑦𝐴 → (𝑥𝑦𝑧𝑦)))
1514ralrimiv 2965 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → ∀𝑦𝐴 (𝑥𝑦𝑧𝑦))
16 ralim 2948 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝐴 (𝑥𝑦𝑧𝑦) → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))
1715, 16syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))
1817ex 450 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦)))
1918anasss 679 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ (𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (𝑧 < 𝑥 → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦)))
2019expcom 451 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧 ∈ ℤ → (𝑧 < 𝑥 → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))))
2120com23 86 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → (𝑧 ∈ ℤ → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))))
2221imp 445 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → (𝑧 ∈ ℤ → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦)))
2322imdistand 728 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑧𝑦)))
24 breq1 4656 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
2524ralbidv 2986 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 𝑧𝑦))
2625rspcev 3309 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑧𝑦) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)
2723, 26syl6 35 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
2827ex 450 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
2928com23 86 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3029ancomsd 470 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → ((∀𝑦𝐴 𝑥𝑦𝑧 ∈ ℤ) → (𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3130expdimp 453 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑧 ∈ ℤ → (𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3231rexlimdv 3030 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑦𝐴 𝑥𝑦) → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
3332anasss 679 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ ∀𝑦𝐴 𝑥𝑦)) → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
3433expcom 451 . . . . . 6 ((𝐴 ⊆ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑥 ∈ ℝ → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
354, 34mpdi 45 . . . . 5 ((𝐴 ⊆ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑥 ∈ ℝ → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
3635ex 450 . . . 4 (𝐴 ⊆ ℝ → (∀𝑦𝐴 𝑥𝑦 → (𝑥 ∈ ℝ → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3736com23 86 . . 3 (𝐴 ⊆ ℝ → (𝑥 ∈ ℝ → (∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
381, 2, 37rexlimd 3026 . 2 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
39 zssre 11384 . . 3 ℤ ⊆ ℝ
40 ssrexv 3667 . . 3 (ℤ ⊆ ℝ → (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦))
4139, 40ax-mp 5 . 2 (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
4238, 41impbid1 215 1 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 ↔ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wcel 1990  wral 2912  wrex 2913  wss 3574   class class class wbr 4653  cr 9935   < clt 10074  cle 10075  cz 11377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-z 11378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator