MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inabs Structured version   Visualization version   GIF version

Theorem inabs 3855
Description: Absorption law for intersection. (Contributed by NM, 16-Apr-2006.)
Assertion
Ref Expression
inabs (𝐴 ∩ (𝐴𝐵)) = 𝐴

Proof of Theorem inabs
StepHypRef Expression
1 ssun1 3776 . 2 𝐴 ⊆ (𝐴𝐵)
2 df-ss 3588 . 2 (𝐴 ⊆ (𝐴𝐵) ↔ (𝐴 ∩ (𝐴𝐵)) = 𝐴)
31, 2mpbi 220 1 (𝐴 ∩ (𝐴𝐵)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  cun 3572  cin 3573  wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-in 3581  df-ss 3588
This theorem is referenced by:  dfif5  4102  caragenuncllem  40726
  Copyright terms: Public domain W3C validator