| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nssinpss | Structured version Visualization version GIF version | ||
| Description: Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| nssinpss | ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ⊊ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 3833 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | 1 | biantrur 527 | . 2 ⊢ ((𝐴 ∩ 𝐵) ≠ 𝐴 ↔ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∩ 𝐵) ≠ 𝐴)) |
| 3 | df-ss 3588 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 4 | 3 | necon3bbii 2841 | . 2 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ≠ 𝐴) |
| 5 | df-pss 3590 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊊ 𝐴 ↔ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∩ 𝐵) ≠ 𝐴)) | |
| 6 | 2, 4, 5 | 3bitr4i 292 | 1 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ⊊ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 384 ≠ wne 2794 ∩ cin 3573 ⊆ wss 3574 ⊊ wpss 3575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-in 3581 df-ss 3588 df-pss 3590 |
| This theorem is referenced by: fbfinnfr 21645 chrelat2i 29224 |
| Copyright terms: Public domain | W3C validator |